OFFSET
0,2
COMMENTS
Compare to g.f. of the partition numbers A000041:
exp( Sum_{n>=1} x^n/(1 - x^n)/n ) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 +...
FORMULA
G.f.: exp( Sum_{n>=1} x^n/n * Sum_{d|n} 2^(n*d) * n/d ).
EXAMPLE
G.f.: A(x) = 1 + 2*x + 14*x^2 + 204*x^3 + 16982*x^4 + 6746636*x^5 +...
log(A(x)) = 2*x + 24*x^2/2 + 536*x^3/3 + 66112*x^4/4 + 33554592*x^5/5 +...
log(A(x)) = 2*x/(1-2*x) + 2^4*x^2/(1-2^4*x^2)/2 + 2^9*x^3/(1-2^9*x^3)/3 +...
PROG
(PARI) {a(n)=if(n==0, 1, polcoeff(exp(sum(k=1, n, (2^k*x)^k/(1-(2^k*x)^k +x*O(x^n))/k)), n))}
for(n=0, 15, print1(a(n), ", "))
(PARI) {a(n) = polcoeff( exp( sum(m=1, n, x^m/m * sumdiv(m, d, 2^(m*d) * m/d) ) +x*O(x^n)), n)}
for(n=0, 15, print1(a(n), ", ")) \\ Paul D. Hanna, Sep 30 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 26 2009
STATUS
approved