The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A158097 G.f.: A(x) = exp( Sum_{n>=1} x^n/n * 2^(n^2)/(1 - 2^(n^2)*x^n) ). 2
 1, 2, 14, 204, 16982, 6746636, 11467009772, 80444425963128, 2306004014991374374, 268654794950955551450892, 126765597355485863873077402788, 241678070949320869650125781001909864 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Compare to g.f. of the partition numbers A000041: exp( Sum_{n>=1} x^n/(1 - x^n)/n ) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 +... LINKS FORMULA G.f.: exp( Sum_{n>=1} x^n/n * Sum_{d|n} 2^(n*d) * n/d ). EXAMPLE G.f.: A(x) = 1 + 2*x + 14*x^2 + 204*x^3 + 16982*x^4 + 6746636*x^5 +... log(A(x)) = 2*x + 24*x^2/2 + 536*x^3/3 + 66112*x^4/4 + 33554592*x^5/5 +... log(A(x)) = 2*x/(1-2*x) + 2^4*x^2/(1-2^4*x^2)/2 + 2^9*x^3/(1-2^9*x^3)/3 +... PROG (PARI) {a(n)=if(n==0, 1, polcoeff(exp(sum(k=1, n, (2^k*x)^k/(1-(2^k*x)^k +x*O(x^n))/k)), n))} for(n=0, 15, print1(a(n), ", ")) (PARI) {a(n) = polcoeff( exp( sum(m=1, n, x^m/m * sumdiv(m, d, 2^(m*d) * m/d) ) +x*O(x^n)), n)} for(n=0, 15, print1(a(n), ", ")) \\ Paul D. Hanna, Sep 30 2015 CROSSREFS Cf. A158096, A155200. Sequence in context: A262008 A054652 A122647 * A262003 A271847 A136550 Adjacent sequences:  A158094 A158095 A158096 * A158098 A158099 A158100 KEYWORD nonn AUTHOR Paul D. Hanna, Mar 26 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 9 02:14 EDT 2020. Contains 336310 sequences. (Running on oeis4.)