

A158090


Period length 9: repeat 0, 6, 0, 6, 0, 0, 3, 3, 0.


3



0, 6, 0, 6, 0, 0, 3, 3, 0, 0, 6, 0, 6, 0, 0, 3, 3, 0, 0, 6, 0, 6, 0, 0, 3, 3, 0, 0, 6, 0, 6, 0, 0, 3, 3, 0, 0, 6, 0, 6, 0, 0, 3, 3, 0, 0, 6, 0, 6, 0, 0, 3, 3, 0, 0, 6, 0, 6, 0, 0, 3, 3, 0, 0, 6, 0, 6, 0, 0, 3, 3, 0, 0, 6, 0, 6, 0, 0, 3, 3, 0, 0, 6, 0, 6, 0, 0, 3, 3, 0, 0, 6, 0, 6, 0, 0, 3, 3, 0, 0, 6, 0, 6, 0, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

Also the continued fraction expansion of 6+sqrt(3970)/10 (dropping a(0)).
Also the decimal expansion of 6733370/111111111.


LINKS

Table of n, a(n) for n=0..104.
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,1).


FORMULA

a(n) = ( A061037(n)*A061037(n+1) ) mod 9.
a(n) = a(n9). G.f.: 3*x*(2+2*x^2+x^5+x^6)/((x1)*(1+x+x^2)*(x^6+x^3+1)).
a(n)=(1/28)*{(n mod 9)+7*[(n+1) mod 9]+[(n+2) mod 9]5*[(n+3) mod 9]+[(n+4) mod 9]+13*[(n+5) mod 9]11*[(n+6) mod 9]+13*[(n+7) mod 9]11*[(n+8) mod 9]}, with n>=0 [From Paolo P. Lava, Mar 16 2009]


CROSSREFS

Cf. A157742, A158012, A158068.
Sequence in context: A019110 A280508 A217221 * A010677 A021169 A303494
Adjacent sequences: A158087 A158088 A158089 * A158091 A158092 A158093


KEYWORD

nonn,easy


AUTHOR

Paul Curtz, Mar 12 2009


EXTENSIONS

Anumber in the formula corrected by R. J. Mathar, Sep 11 2009


STATUS

approved



