This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A158085 Starting at a(1)=2, a(n) is the smallest prime larger than a(n-1) such that the sum of odd digits of a(n) is not smaller than the sum of odd digits of a(n-1). 1
 2, 3, 5, 7, 17, 19, 37, 59, 79, 97, 179, 197, 199, 379, 397, 577, 599, 797, 977, 997, 1979, 1997, 1999, 5779, 7759, 7993, 9199, 9397, 9739, 9973, 13799, 13997, 13999, 17599, 17959, 17977, 19597, 19759, 19777, 19979 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS "Odd digits" means odd-valued digits (not digits in odd-indexed positions). LINKS FORMULA A071649(a(n)) >= A071649(a(n-1)). - R. J. Mathar, Feb 02 2015 EXAMPLE The sequence of the sums of odd digits is 0, 3=3, 5=5, 7=7, 1+7=8, 1+9=10, 3+7=10, 5+9=14, 7+9=16, 9+7=16, 1+7+9=17, 1+9+7=17, 1+9+9=19 and so on. - R. J. Mathar, Feb 02 2015 MAPLE A158085 := proc(n)     option remember;     if n =1 then         2;     else         for a from procname(n-1)+1 do             if isprime(a) then                 if A071649(a) >= A071649(procname(n-1)) then                     return a;                 end if;             end if;         end do: end if; # R. J. Mathar, Feb 02 2015 MATHEMATICA spl[n_]:=Module[{sod=Total[Select[IntegerDigits[n], OddQ]], p1= NextPrime[ n]}, While[ Total[ Select[ IntegerDigits[ p1], OddQ]]

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 8 18:37 EST 2019. Contains 329865 sequences. (Running on oeis4.)