The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A158067 a(n) = 64*n^2 - 2*n. 1
 62, 252, 570, 1016, 1590, 2292, 3122, 4080, 5166, 6380, 7722, 9192, 10790, 12516, 14370, 16352, 18462, 20700, 23066, 25560, 28182, 30932, 33810, 36816, 39950, 43212, 46602, 50120, 53766, 57540, 61442, 65472, 69630, 73916, 78330, 82872 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The identity (64*n - 1)^2 - (64*n^2 - 2*n)*8^2 = 1 can be written as (A152691(n+1) - 1)^2 - a(n)*8^2 = 1. - Vincenzo Librandi, Feb 11 2012 LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..10000 E. J. Barbeau, Polynomial Excursions, Chapter 10: Diophantine equations (2010), pages 84-85 (row 15 in the first table at p. 85, case d(t) = t*(8^2*t-2)). Index entries for linear recurrences with constant coefficients, signature (3,-3,1). FORMULA G.f.: x*(-62 - 66*x)/(x-1)^3. - Vincenzo Librandi, Feb 11 2012 a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Feb 11 2012 MATHEMATICA LinearRecurrence[{3, -3, 1}, {62, 252, 570}, 50] (* Vincenzo Librandi, Feb 11 2012 *) PROG (Magma)[64*n^2 - 2*n: n in [1..50]] (PARI) for(n=1, 50, print1(64*n^2 - 2*n ", ")); \\ Vincenzo Librandi, Feb 11 2012 CROSSREFS Cf. A152691. Sequence in context: A318561 A234490 A234483 * A045220 A100158 A100166 Adjacent sequences: A158064 A158065 A158066 * A158068 A158069 A158070 KEYWORD nonn,easy AUTHOR Vincenzo Librandi, Mar 12 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 28 07:13 EST 2023. Contains 359850 sequences. (Running on oeis4.)