

A158058


a(n) = 16*n^2  2*n.


2



14, 60, 138, 248, 390, 564, 770, 1008, 1278, 1580, 1914, 2280, 2678, 3108, 3570, 4064, 4590, 5148, 5738, 6360, 7014, 7700, 8418, 9168, 9950, 10764, 11610, 12488, 13398, 14340, 15314, 16320, 17358, 18428, 19530, 20664, 21830, 23028, 24258, 25520
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

The identity (16*(n1) + 15)^2  (16*n^2  2*n)*4^2 = 1 can be written as A125169(n1)^2  a(n)*4^2 = 1.  Vincenzo Librandi, Feb 01 2012
Sequence found by reading the line from 14, in the direction 14, 60, ... in the square spiral whose vertices are the generalized decagonal numbers A074377.  Omar E. Pol, Nov 02 2012


LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..10000
E. J. Barbeau, Polynomial Excursions, Chapter 10: Diophantine equations (2010), pages 8485 (row 15 in the first table at p. 85, case d(t) = t*(4^2*t2)).
Index entries for linear recurrences with constant coefficients, signature (3,3,1).


FORMULA

G.f.: x*(14  18*x)/(x1)^3.
a(n) = 3*a(n1)  3*a(n2) + a(n3).


MAPLE

seq(16*n^22*n, n=1..40); # Nathaniel Johnston, Jun 26 2011


MATHEMATICA

LinearRecurrence[{3, 3, 1}, {14, 60, 138}, 40]


PROG

(MAGMA) [16*n^22*n: n in [1..40]]
(PARI) a(n) = 16*n^22*n.


CROSSREFS

Cf. A125169.
Sequence in context: A062022 A277986 A261282 * A100171 A063492 A051799
Adjacent sequences: A158055 A158056 A158057 * A158059 A158060 A158061


KEYWORD

nonn,easy


AUTHOR

Vincenzo Librandi, Mar 12 2009


STATUS

approved



