login
A158056
a(n) = 16*n^2 + 2*n.
2
18, 68, 150, 264, 410, 588, 798, 1040, 1314, 1620, 1958, 2328, 2730, 3164, 3630, 4128, 4658, 5220, 5814, 6440, 7098, 7788, 8510, 9264, 10050, 10868, 11718, 12600, 13514, 14460, 15438, 16448, 17490, 18564, 19670, 20808, 21978, 23180, 24414, 25680
OFFSET
1,1
COMMENTS
The identity (16*n + 1)^2 - (16*n^2 + 2*n)*4^2 = 1 can be written as A158057(n)^2 - a(n)*4^2 = 1. - Vincenzo Librandi, Feb 09 2012
Sequence found by reading the line from 18, in the direction 18, 68, ... in the square spiral whose vertices are the generalized decagonal numbers A074377. - Omar E. Pol, Nov 02 2012
FORMULA
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: 2*x*(-9 - 7*x)/(x-1)^3.
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {18, 68, 150}, 50]
Table[16n^2+2n, {n, 40}] (* Harvey P. Dale, Apr 13 2011 *)
PROG
(Magma) I:=[18, 68, 150]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..50]];
(PARI) a(n) = 16*n^2 + 2*n.
CROSSREFS
Cf. A158057.
Sequence in context: A143859 A063523 A045234 * A304061 A214491 A135470
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 12 2009
STATUS
approved