login
A158040
Determinant of power series of gamma matrix with determinant 2!.
12
2, 32, 258, 1664, 9710, 53664, 286762, 1497600, 7691238, 38995360, 195696226, 973894272, 4812812446, 23642953376, 115552680090, 562240972800, 2724987988054, 13161369525408, 63371643947474, 304287501281920, 1457424739149582, 6964697175476128
OFFSET
1,1
COMMENTS
a(n) = Determinant(A + A^2 + A^3 + A^4 + A^5 + ... + A^n) where A is the submatrix A(1..3,1..3) of the matrix with factorial determinant A = [[1,1,1,1,1,1,...],[1,2,1,2,1,2,...], [1,2,3,1,2,3,...], [1,2,3,4,1,2,...], [1,2,3,4,5,1,...], [1,2,3,4,5,6,...], ...]; note: Determinant A(1..n,1..n) = (n-1)!.
REFERENCES
G. Balzarotti and P. P. Lava, Le sequenze di numeri interi, Hoepli, 2008.
FORMULA
Empirical g.f.: 2*x*(8*x^6 -50*x^4 +64*x^3 -25*x^2 +1) / ((x -1)^2*(2*x -1)^2*(2*x^2 -5*x +1)^2). - Colin Barker, Jul 13 2014
EXAMPLE
a(1) = Determinant(A) = 2! = 2.
MAPLE
seq(Determinant(sum(A2^i, i=1..n)), n=1..30);
PROG
(PARI) vector(100, n, matdet(sum(k=1, n, [1, 1, 1 ; 1, 2, 1 ; 1, 2, 3]^k))) \\ Colin Barker, Jul 13 2014
CROSSREFS
Cf. A111490.
Sequence in context: A008512 A179074 A035602 * A202746 A212797 A203017
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms, and offset changed to 1 by Colin Barker, Jul 13 2014
STATUS
approved