|
|
A158015
|
|
Primes p such that 6*p-1 is also prime.
|
|
10
|
|
|
2, 3, 5, 7, 17, 19, 23, 29, 43, 47, 53, 59, 67, 103, 107, 109, 113, 127, 137, 157, 163, 197, 199, 227, 229, 239, 269, 283, 313, 317, 347, 359, 373, 379, 383, 389, 397, 439, 443, 449, 457, 463, 467, 523, 569, 577, 593, 599, 613, 617, 647, 653, 709, 733, 743, 773
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Solutions of the equation (6*n-1)'+n'=2, where n' is the arithmetic derivative of n. - Paolo P. Lava, Oct 31 2012
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 1..1000
|
|
MATHEMATICA
|
Flatten[Table[If[PrimeQ[n] && PrimeQ[6*n - 1], n, {}], {n, 1, 10000}]]
Select[Prime[Range[200]], PrimeQ[(6 # - 1)]&] (* Vincenzo Librandi, Apr 14 2013 *)
|
|
PROG
|
(MAGMA) [p: p in PrimesUpTo(800) | IsPrime(6*p-1)]; // Vincenzo Librandi, Apr 14 2013
|
|
CROSSREFS
|
Cf. A005382 for the type 2p-1, A062737 for 4p-1, A158016 for 8p-1, A158017 for 10p-1.
Primes in A024898, i.e., intersection of A024898 with A000040.
Sequence in context: A129692 A272441 A155471 * A042995 A108222 A090725
Adjacent sequences: A158012 A158013 A158014 * A158016 A158017 A158018
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Roger L. Bagula, Mar 11 2009
|
|
EXTENSIONS
|
Edited by the Associate Editors of the OEIS, Apr 22 2009
|
|
STATUS
|
approved
|
|
|
|