login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A157998 169n^2 - n. 2
168, 674, 1518, 2700, 4220, 6078, 8274, 10808, 13680, 16890, 20438, 24324, 28548, 33110, 38010, 43248, 48824, 54738, 60990, 67580, 74508, 81774, 89378, 97320, 105600, 114218, 123174, 132468, 142100, 152070, 162378, 173024, 184008, 195330 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

The identity (338*n-1)^2-(169*n^2-n)*(26)^2=1 can be written as A157999(n)^2-a(n)*(26)^2=1.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..10000

Vincenzo Librandi, X^2-AY^2=1

E. J. Barbeau, Polynomial Excursions, Chapter 10: Diophantine equations (2010), pages 84-85 (row 14 in the first table at p. 85, case d(t) = t*(13^2*t-1)).

Index entries for linear recurrences with constant coefficients, signature (3,-3,1).

FORMULA

a(n) = 3*a(n-1) -3*a(n-2) +a(n-3).

G.f.: x*(168+170*x)/(1-x)^3. [Colin Barker, Jan 17 2012]

MAPLE

A157998:=n->169*n^2 - n; seq(A157998(n), n=1..50); # Wesley Ivan Hurt, Jan 30 2014

MATHEMATICA

LinearRecurrence[{3, -3, 1}, {168, 674, 1518}, 50]

PROG

(MAGMA) I:=[168, 674, 1518]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..50]];

(PARI) a(n) = 169*n^2 - n.

CROSSREFS

Cf. A157999.

Sequence in context: A266808 A234738 A234731 * A234823 A234816 A245868

Adjacent sequences:  A157995 A157996 A157997 * A157999 A158000 A158001

KEYWORD

nonn,easy

AUTHOR

Vincenzo Librandi, Mar 11 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 5 19:19 EST 2016. Contains 278770 sequences.