This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A157996 Primes which are sum of 1 and two nonconsecutive primes p1 and p2, p2 - p1 > 2. 2
 11, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Conjecture: for n > 1, a(n) = prime(n+5). - Charles R Greathouse IV, Mar 12 2012 A185154(n) is the smallest prime q, such that A049084(q) + 1 < A049084(a(n) - q - 1). - Reinhard Zumkeller, Mar 12 2012 LINKS Reinhard Zumkeller, Table of n, a(n) for n = 1..10000 EXAMPLE 11=3+7+1, 17=5+11+1, 19=5+13+1, ... MATHEMATICA lst={}; Do[p0=Prime[n]; Do[px=Prime[n+k]; If[PrimeQ[a=p0+px+1], AppendTo[lst, a]], {k, 2, 2*5!}], {n, 6!}]; Take[Union[lst], 222] PROG (Haskell) a157996 n = a157996_list !! (n-1) a157996_list = map (+ 1) \$ filter f a006093_list where    f x = g \$ takeWhile (< x) a065091_list where      g []  = False      g [_] = False      g (p:ps@(_:qs)) = (x - p) `elem` qs || g ps -- Reinhard Zumkeller, Mar 12 2012 (PARI) is(n)=if(!isprime(n), return(0)); my(p=3, q=5); forprime(r=7, n-4, if(isprime(n-1-r) && n-1-r <= p, return(1)); p=q; q=r); 0 \\ Charles R Greathouse IV, Nov 05 2015 CROSSREFS Cf. A000040, A076805, A005385, A092738, A118071, A157995, A065091, A006093. Sequence in context: A226630 A061751 A063449 * A050713 A217063 A038966 Adjacent sequences:  A157993 A157994 A157995 * A157997 A157998 A157999 KEYWORD nonn AUTHOR Vladimir Joseph Stephan Orlovsky, Mar 11 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 5 21:00 EST 2019. Contains 329779 sequences. (Running on oeis4.)