The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A157994 Number of trees with n edges equipped with a cyclic order on their edges, i.e., number of orbits of the action of Z/nZ on the set of edge-labeled trees of size n, given by cyclically permuting the labels. 0
 1, 1, 2, 8, 44, 411, 4682, 66524, 1111134, 21437357, 469070942, 11488238992, 311505013052, 9267596377239, 300239975166840, 10523614185609344, 396861212733968144, 16024522976922760209, 689852631578947368422 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 LINKS FORMULA a(1) = 1, a(2) = 1, a(n) = (1/n)*((n+1)^{n-2} +  sum_{k=1}^{n-1} (n+1)^{gcd(n,k)-1}) for n > 2 PROG (Sage) [1, 1] + [((n+1)^(n-2) + sum([(n+1)^(gcd(n, k) -1) for k in [1..n-1]]))/n for  n in [3..20]] CROSSREFS Sequence in context: A336545 A126101 A308478 * A002500 A002833 A139015 Adjacent sequences:  A157991 A157992 A157993 * A157995 A157996 A157997 KEYWORD easy,nonn AUTHOR Nikos Apostolakis, Mar 10 2009 EXTENSIONS Corrected the formula and Sage code - Nikos Apostolakis, Feb 27 2011. STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 20 08:12 EST 2021. Contains 340301 sequences. (Running on oeis4.)