The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A157958 a(n) = 242*n + 1. 2
 243, 485, 727, 969, 1211, 1453, 1695, 1937, 2179, 2421, 2663, 2905, 3147, 3389, 3631, 3873, 4115, 4357, 4599, 4841, 5083, 5325, 5567, 5809, 6051, 6293, 6535, 6777, 7019, 7261, 7503, 7745, 7987, 8229, 8471, 8713, 8955, 9197, 9439, 9681, 9923, 10165 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The identity (242*n + 1)^2 - (121*n^2 + n)*22^2 = 1 can be written as a(n)^2 - A173267(n)*22^2 = 1. - Vincenzo Librandi, Feb 06 2012 LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..10000 Vincenzo Librandi, X^2-AY^2=1 E. J. Barbeau, Polynomial Excursions, Chapter 10: Diophantine equations (2010), pages 84-85 (row 14 in the first table at p. 85, case d(t) = t*(11^2*t+1)). Index entries for linear recurrences with constant coefficients, signature (2,-1). FORMULA G.f.: x*(243-x)/(1-x)^2. - Vincenzo Librandi, Feb 06 2012 a(n) = 2*a(n-1) - a(n-2). - Vincenzo Librandi, Feb 06 2012 MATHEMATICA LinearRecurrence[{2, -1}, {243, 485}, 50] (* Vincenzo Librandi, Feb 06 2012 *) 242*Range[50]+1 (* Harvey P. Dale, Sep 01 2015 *) PROG (MAGMA) I:=[243, 485]; [n le 2 select I[n] else 2*Self(n-1)-Self(n-2): n in [1..50]]; // Vincenzo Librandi, Feb 06 2012 (PARI) for(n=1, 40, print1(242*n + 1", ")); \\ Vincenzo Librandi, Feb 06 2012 CROSSREFS Cf. A173267. Sequence in context: A046318 A046375 A226064 * A232924 A067838 A255111 Adjacent sequences:  A157955 A157956 A157957 * A157959 A157960 A157961 KEYWORD nonn,easy AUTHOR Vincenzo Librandi, Mar 10 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 3 11:58 EST 2020. Contains 338900 sequences. (Running on oeis4.)