login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A157931 Numbers that are both the sum and the product of two primes. 8
4, 6, 9, 10, 14, 15, 21, 22, 25, 26, 33, 34, 38, 39, 46, 49, 55, 58, 62, 69, 74, 82, 85, 86, 91, 94, 106, 111, 115, 118, 122, 129, 133, 134, 141, 142, 146, 158, 159, 166, 169, 178, 183, 194, 201, 202, 206, 213, 214, 218, 226, 235, 253, 254, 259, 262, 265, 274, 278 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Assuming the Goldbach conjecture, this is A001358 intersect (A005843 union A052147), since an odd number n is the sum of two primes iff n-2 is prime. - N. J. A. Sloane, Mar 14 2009

The first few terms of A001358: Semiprimes, not members of A157931 are: 35, 51, 57, 65, 77, 87, 93, 95, ..., . - Robert G. Wilson v, Mar 15 2009

LINKS

Donovan Johnson, Table of n, a(n) for n = 1..10000 (first 1096 terms from Robert G. Wilson v)

FORMULA

A014091 INTERSECT A001358. - R. J. Mathar, Mar 15 2009

EXAMPLE

For the numbers up to 100, the solutions are 4 = (2+2) = (2*2); 6 = (3+3) = (2*3); 9 = (2+7) = (3*3); 10 = (3+7) = (2*5); 14 = (3+11) = (2*7); 15 = (2+13) = (3*5); 21 = (2+19) = (3*7); 22 = (3+19) = (2*11); 25 = (2+23) = (5*5); 26 = (3+23) = (2*13); 33 = (2+31) = (3*11); 34 = (3+31) = (2*17); 38 = (7+31) = (2*19); 39 = (2+37) = (3*13); 46 = (3+43) = (2*23); 49 = (2+47) = (7*7); 55 = (2+53) = (5*11); 58 = (5+53) = (2*29); 62 = (3+59) = (2*31); 69 = (2+67) = (3*23); 74 = (3+71) = (2*37); 82 = (3+79) = (2*41); 85 = (2+83) = (5*17); 86 = (3+83) = (2*43); 91 = (2+89) = (7*13); 94 = (5+89) = (2*47).

MAPLE

isA014091 := proc(n) for i from 1 do p := ithprime(i) ; if p > n/2 then RETURN(false); fi; if isprime(n-p) then RETURN(true) ; fi; od: end: isA001358 := proc(n) RETURN(numtheory[bigomega](n) = 2) ; end: for n from 4 to 500 do if isA001358(n) and isA014091(n) then printf("%d, ", n) ; fi; od: # R. J. Mathar, Mar 15 2009

MATHEMATICA

fQ[n_] := Block[{k = 2}, While[k < n, If[ PrimeQ[n - k], Break[]]; k = NextPrime@k]; k + 1 < n]; semiPrimeQ[n_] := Plus @@ Last /@ FactorInteger@n == 2; Select[ Range@ 295, fQ@# && semiPrimeQ@# &] (* Robert G. Wilson v, Mar 15 2009 *)

Select[Union[Flatten[Table[Prime[i] + Prime[j], {i, 50}, {j, 50}]]], PrimeOmega[#] == 2 &] (* Alonso del Arte, Feb 08 2013 *)

Union[Select[Total/@Tuples[Prime[Range[60]], 2], PrimeOmega[#]==2&]] (* Harvey P. Dale, Jul 27 2015 *)

PROG

(Haskell)

a157931 n = a157931_list !! (n-1)

a157931_list = filter ((== 1) . a064911) a014091_list

-- Reinhard Zumkeller, Oct 15 2014

CROSSREFS

Cf. A001358, A005843, A052147, A062721.

Cf. A043326 Numbers n such that n is a product of two different primes and n - 2 is prime, A062721 Numbers n such that n is a product of two primes and n - 2 is prime. - Zak Seidov, Mar 15 2009

Cf. A014091, A064911, A100962.

Sequence in context: A103607 A264815 A108574 * A046368 A236108 A253106

Adjacent sequences:  A157928 A157929 A157930 * A157932 A157933 A157934

KEYWORD

easy,nonn,nice

AUTHOR

William Weeks (dach(AT)kuci.org), Mar 09 2009

EXTENSIONS

Edited by N. J. A. Sloane, Mar 14 2009

Extended by R. J. Mathar and Robert G. Wilson v, Mar 15 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 17 11:02 EST 2019. Contains 329226 sequences. (Running on oeis4.)