login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A157923 49n^2 - n. 2

%I

%S 48,194,438,780,1220,1758,2394,3128,3960,4890,5918,7044,8268,9590,

%T 11010,12528,14144,15858,17670,19580,21588,23694,25898,28200,30600,

%U 33098,35694,38388,41180,44070,47058,50144,53328,56610,59990,63468,67044

%N 49n^2 - n.

%C The identity (98n-1)^2-(49n^2-n)*14^2=1 can be written as A157924(n)^2-a(n)*14^2=1. - Vincenzo Librandi, Feb 05 2012

%H Vincenzo Librandi, <a href="/A157923/b157923.txt">Table of n, a(n) for n = 1..10000</a>

%H E. J. Barbeau, <a href="http://www.math.toronto.edu/barbeau/home.html">Polynomial Excursions</a>, Chapter 10: <a href="http://www.math.toronto.edu/barbeau/hxpol10.pdf">Diophantine equations</a> (2010), pages 84-85 (row 14 in the first table at p. 85, case d(t) = t*(7^2*t-1)).

%H <a href="/Sindx_Rea.html#recLCC">Index to sequences with linear recurrences with constant coefficients</a>, signature (3,-3,1).

%F G.f.: x*(-48-50*x)/(x-1)^3. - Vincenzo Librandi, Feb 05 2012

%F a(n) = 3*a(n-1) -3*a(n-2) +a(n-3). - Vincenzo Librandi, Feb 05 2012

%t LinearRecurrence[{3, -3, 1}, {48, 194, 438}, 50] (* _Vincenzo Librandi_, Feb 05 2012

%o (MAGMA) I:=[48, 194, 438]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..50]]; - Vincenzo Librandi, Feb 05 2012

%o (PARI) for(n=1, 40, print1(49*n^2 - n", ")); \\ Vincenzo Librandi, Feb 05 2012

%Y Cf. A157924.

%K nonn,easy

%O 1,1

%A _Vincenzo Librandi_, Mar 09 2009

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified December 20 03:43 EST 2014. Contains 252241 sequences.