OFFSET
1,1
COMMENTS
The identity (72*n - 1)^2 - (36*n^2 - n)*12^2 = 1 can be written as a(n)^2 - A157286(n)*12^2 = 1. - Vincenzo Librandi, Jan 28 2012
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..10000
Vincenzo Librandi, X^2-AY^2=1
E. J. Barbeau, Polynomial Excursions, Chapter 10: Diophantine equations (2010), pages 84-85 (row 14 in the first table at p. 85, case d(t) = t*(6^2*t-1)).
Index entries for linear recurrences with constant coefficients, signature (2,-1).
FORMULA
a(n) = 2*a(n-1) - a(n-2). - Vincenzo Librandi, Jan 28 2012
G.f.: x*(x+71)/(x-1)^2. - Vincenzo Librandi, Jan 28 2012
MATHEMATICA
LinearRecurrence[{2, -1}, {71, 143}, 50] (* Vincenzo Librandi, Jan 28 2012 *)
72*Range[50]-1 (* Harvey P. Dale, Sep 06 2019 *)
PROG
(Magma) I:=[71, 143]; [n le 2 select I[n] else 2*Self(n-1)-Self(n-2): n in [1..50]]; // Vincenzo Librandi, Jan 28 2012
(PARI) for(n=1, 40, print1(72*n - 1", ")); \\ Vincenzo Librandi, Jan 28 2012
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 09 2009
STATUS
approved