The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A157895 Coefficients of polynomials of a prime like factor set : p(x,n)=Sum[x^i, {i, 0, (Prime[n] - 1)/2}]; q(n,n)=Sum[(-1)^i*x^i, {i, 0, (Prime[n] - 1)/2}]; t(x,n)=If[n == 0, 1, If[n == 1, x + 1, (x + 1)*p[x, n]*q[x, n]]]. 0
 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Row sums are: {1, 2, 0, 6, 0, 0, 14, 18, 0, 0, 30, 0, 38, 42, 0, 0, 54, 0, 62, 0, 0,...}. This row sum minus one picks out as cyclotomic the primes; A002144: {5,13,17,29,37,41,53,61,...} LINKS FORMULA p(x,n)=Sum[x^i, {i, 0, (Prime[n] - 1)/2}]; q(n,n)=Sum[(-1)^i*x^i, {i, 0, (Prime[n] - 1)/2}]; t(x,n)=If[n == 0, 1, If[n == 1, x + 1, (x + 1)*p[x, n]*q[x, n]]]; out_(n,m)=coefficients(t(x,n)). EXAMPLE {1}, {1, 1}, {1, 1, -1, -1}, {1, 1, 1, 1, 1, 1}, {1, 1, 1, 1, -1, -1, -1, -1}, {1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1}, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1} MATHEMATICA Clear[p, q, t, x, n]; p[x_, n_] := Sum[x^i, {i, 0, (Prime[n] - 1)/2}]; q[x_, n_] := Sum[(-1)^i*x^i, {i, 0, (Prime[n] - 1)/2}]; t[x_, n_] := If[n == 0, 1, If[n == 1, x + 1, (x + 1)*p[x, n]*q[x, n]]]; Table[ExpandAll[t[x, n]], {n, 0, 10}]; Table[CoefficientList[ExpandAll[t[x, n]], x], {n, 0, 10}]; Flatten[%] CROSSREFS Sequence in context: A232544 A309873 A162511 * A063747 A077008 A158387 Adjacent sequences: A157892 A157893 A157894 * A157896 A157897 A157898 KEYWORD sign,tabl,uned AUTHOR Roger L. Bagula, Mar 08 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 5 02:30 EST 2022. Contains 358572 sequences. (Running on oeis4.)