OFFSET
1,2
COMMENTS
LINKS
Colin Barker, Table of n, a(n) for n = 1..300
Index entries for linear recurrences with constant coefficients, signature (1443,-1443,1).
FORMULA
G.f.: 152*x^2/(-x^3+1443*x^2-1443*x+1).
c(1) = 0, c(2) = 152, c(3) = 1443*c(2), c(n) = 1443 * (c(n-1)-c(n-2)) + c(n-3) for n>3.
a(n) = -((721+228*sqrt(10))^(-n)*(-1+(721+228*sqrt(10))^n)*(19+6*sqrt(10)+(-19+6*sqrt(10))*(721+228*sqrt(10))^n))/360. - Colin Barker, Jul 25 2016
MATHEMATICA
LinearRecurrence[{1443, -1443, 1}, {0, 152, 219336}, 20] (* Harvey P. Dale, Jul 18 2019 *)
PROG
(PARI) concat(0, Vec(152*x^2/(-x^3+1443*x^2-1443*x+1) + O(x^20))) \\ Charles R Greathouse IV, Sep 26 2012
(PARI) a(n) = round(-((721+228*sqrt(10))^(-n)*(-1+(721+228*sqrt(10))^n)*(19+6*sqrt(10)+(-19+6*sqrt(10))*(721+228*sqrt(10))^n))/360) \\ Colin Barker, Jul 25 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Weisenhorn, Mar 08 2009, Jun 25 2009
EXTENSIONS
Edited by Alois P. Heinz, Sep 09 2011
STATUS
approved