OFFSET
1,2
COMMENTS
LINKS
Colin Barker, Table of n, a(n) for n = 1..350
Index entries for linear recurrences with constant coefficients, signature (675,-675,1).
FORMULA
G.f.: 104*x^2 / (-x^3+675*x^2-675*x+1).
c(1) = 0, c(2) = 104, c(3) = 675*c(2), c(n) = 675 * (c(n-1)-c(n-2)) + c(n-3) for n>3.
a(n) = -((337+52*sqrt(42))^(-n)*(-1+(337+52*sqrt(42))^n)*(13+2*sqrt(42)+(-13+2*sqrt(42))*(337+52*sqrt(42))^n))/168. - Colin Barker, Jul 25 2016
MATHEMATICA
Rest[CoefficientList[Series[104x^2/(-x^3+675x^2-675x+1), {x, 0, 20}], x]] (* or *) LinearRecurrence[{675, -675, 1}, {0, 104, 70200}, 20] (* Harvey P. Dale, Oct 04 2015 *)
PROG
(PARI) concat(0, Vec(104*x^2/(-x^3+675*x^2-675*x+1) + O(x^20))) \\ Charles R Greathouse IV, Sep 26 2012
(PARI) a(n) = -round((337+52*sqrt(42))^(-n)*(-1+(337+52*sqrt(42))^n)*(13+2*sqrt(42)+(-13+2*sqrt(42))*(337+52*sqrt(42))^n))/168 \\ Colin Barker, Jul 25 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Weisenhorn, Mar 08 2009
EXTENSIONS
Edited by Alois P. Heinz, Sep 09 2011
STATUS
approved