login
A157839
1728000n - 1451760.
3
276240, 2004240, 3732240, 5460240, 7188240, 8916240, 10644240, 12372240, 14100240, 15828240, 17556240, 19284240, 21012240, 22740240, 24468240, 26196240, 27924240, 29652240, 31380240, 33108240, 34836240, 36564240
OFFSET
1,1
COMMENTS
The identity (103680000*n^2-174211200*n+73180801)^2-(3600*n^2-6049*n+2541)*(1728000*n-1451760)^2=1 can be written as A157840(n)^2-A157838(n)*a(n)^2=1.
FORMULA
a(n) = 2*a(n-1) -a(n-2).
G.f.: x*(276240+1451760*x)/(x-1)^2.
MATHEMATICA
LinearRecurrence[{2, -1}, {276240, 2004240}, 40]
PROG
(Magma) I:=[276240, 2004240]; [n le 2 select I[n] else 2*Self(n-1)-Self(n-2): n in [1..50]];
(PARI) a(n) = 1728000*n - 1451760.
CROSSREFS
Sequence in context: A274351 A114664 A069372 * A237808 A271349 A295472
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 07 2009
STATUS
approved