login
A157824
3600n^2 - 6751n + 3165.
3
14, 4063, 15312, 33761, 59410, 92259, 132308, 179557, 234006, 295655, 364504, 440553, 523802, 614251, 711900, 816749, 928798, 1048047, 1174496, 1308145, 1448994, 1597043, 1752292, 1914741, 2084390, 2261239, 2445288, 2636537
OFFSET
1,1
COMMENTS
The identity (103680000*n^2-194428800*n+91152001)^2-(3600*n^2-6751*n+3165)*(1728000*n-1620240)^2=1 can be written as A157826(n)^2-a(n)*A157825(n)^2=1.
FORMULA
a(n) = 3*a(n-1) -3*a(n-2) +a(n-3).
G.f.: x*(-14-4021*x-3165*x^2)/(x-1)^3.
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {14, 4063, 15312}, 40]
PROG
(Magma) I:=[14, 4063, 15312]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]];
(PARI) a(n) = 3600*n^2 - 6751*n + 3165.
CROSSREFS
Sequence in context: A368022 A337961 A188955 * A180588 A214441 A241326
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 07 2009
STATUS
approved