login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A157796 27225n^2 - 12098n + 1344. 3
16471, 86048, 210075, 388552, 621479, 908856, 1250683, 1646960, 2097687, 2602864, 3162491, 3776568, 4445095, 5168072, 5945499, 6777376, 7663703, 8604480, 9599707, 10649384, 11753511, 12912088, 14125115, 15392592, 16714519 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

The identity(1482401250*n^2-658736100*n+73180801)^2-(27225*n^2-12098*n+1344)*(8984250*n-1996170)^2=1 can be written as A157798(n)^2-a(n)*A157797(n)^2=1.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..10000

Vincenzo Librandi, X^2-AY^2=1

Index entries for linear recurrences with constant coefficients, signature (3,-3,1).

FORMULA

G.f.: x*(-16471-36635*x-1344*x^2)/(x-1)^3.

a(1)=16471, a(2)=86048, a(3)=210075, a(n)=3*a(n-1)-3*a(n-2)+a(n-3). - Harvey P. Dale, Jul 02 2011

MATHEMATICA

Table[27225n^2-12098n+1344, {n, 25}]  (* Harvey P. Dale, Feb 20 2011 *)

LinearRecurrence[{3, -3, 1}, {16471, 86048, 210075}, 25] (* Harvey P. Dale, Jul 02 2011 *)

PROG

(MAGMA) I:=[16471, 86048, 210075]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]];

(PARI) a(n)=27225*n^2-12098*n+1344

CROSSREFS

Cf. A157797, A157798.

Sequence in context: A283027 A031829 A057680 * A186848 A211841 A234054

Adjacent sequences:  A157793 A157794 A157795 * A157797 A157798 A157799

KEYWORD

nonn,easy

AUTHOR

Vincenzo Librandi, Mar 07 2009

EXTENSIONS

Edited by M. F. Hasler, Oct 08 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 13 17:30 EST 2017. Contains 295959 sequences.