login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A157779 Numerator of Bernoulli(n, 1/2). 8
1, 0, -1, 0, 7, 0, -31, 0, 127, 0, -2555, 0, 1414477, 0, -57337, 0, 118518239, 0, -5749691557, 0, 91546277357, 0, -1792042792463, 0, 1982765468311237, 0, -286994504449393, 0, 3187598676787461083, 0, -4625594554880206790555, 0, 16555640865486520478399, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

Included for completeness, normally alternating zeros like this are omitted. A001896 is the official version of this sequence.

The sequence {a(n)/A141459(n)} gives the generalized Bernoulli numbers B[2,1] obtained from the generalized Stirling 2 triangle S3[2,1] = A154537. See the formula section. - Wolfdieter Lang, Apr 27 2017

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..250

Wolfdieter Lang, On Sums of Powers of Arithmetic Progressions, and Generalized Stirling, Eulerian and Bernoulli Numbers, arXiv:math/1707.04451 [math.NT], July 2017.

FORMULA

Let P(x)= Sum_{n>=0} x^(2*n+1)/(2*n+1)! then a(n) = numerator( n! [x^n] x/P(x) ). - Peter Luschny, Jul 05 2016

a(n) = numerator(r(n)) with the rationals r(n) = Sum_{k=0..n} ((-1)^k / (k+1))*A154537(n, k)*k! = Sum_{k=0..n} ((-1)^k/(k+1))*A145901(n, k). The denominators are in A141459. r(n) = B[2,1](n) = 2^n*B(n, 1/2) with the Bernoulli polynomials A196838/A196839 or A053382/A053383. - Wolfdieter Lang, Apr 27 2017

MATHEMATICA

Numerator[BernoulliB[Range[0, 40], 1/2]] (* Harvey P. Dale, May 04 2013 *)

PROG

(Sage)

def A157779_list(size):

    f = x / sum(x^(n*2+1)/factorial(n*2+1) for n in (0..2*size))

    t = taylor(f, x, 0, size)

    return [(factorial(n)*s).numerator() for n, s in enumerate (t.list())]

print A157779_list(33) # Peter Luschny, Jul 05 2016

(PARI) a(n) = numerator(subst(bernpol(n, x), x, 1/2)); \\ Altug Alkan, Jul 05 2016

CROSSREFS

For denominators see A157780 and A141459.

Sequence in context: A282677 A280143 A280144 * A222322 A228762 A046273

Adjacent sequences:  A157776 A157777 A157778 * A157780 A157781 A157782

KEYWORD

sign,frac

AUTHOR

N. J. A. Sloane, Nov 08 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 15 04:23 EST 2019. Contains 329991 sequences. (Running on oeis4.)