login
A157681
Fibonacci sequence beginning 29, 31.
2
29, 31, 60, 91, 151, 242, 393, 635, 1028, 1663, 2691, 4354, 7045, 11399, 18444, 29843, 48287, 78130, 126417, 204547, 330964, 535511, 866475, 1401986, 2268461, 3670447, 5938908, 9609355, 15548263, 25157618, 40705881, 65863499, 106569380
OFFSET
1,1
FORMULA
a(n) = a(n-1) + a(n-2), a(0)=29, a(1)=31.
From G. C. Greubel, Nov 17 2018: (Start)
a(n) = 27*Fibonacci(n) + 2*Fibonacci(n+1).
G.f.: x*(29+2*x)/(1-x-x^2). (End)
MATHEMATICA
LinearRecurrence[{1, 1}, {29, 31}, 40] (* Harvey P. Dale, Dec 05 2014 *)
Table[27*Fibonacci[n] +2*Fibonacci[n+1], {n, 1, 40}] (* G. C. Greubel, Nov 17 2018 *)
PROG
(PARI) vector(40, n, 27*fibonacci(n) + 2*fibonacci(n+1)) \\ G. C. Greubel, Nov 17 2018
(Magma) [27*Fibonacci(n) + 2*Fibonacci(n+1): n in [1..40]]; // G. C. Greubel, Nov 17 2018
(Sage) [27*fibonacci(n)+2*fibonacci(n+1) for n in (1..10)] # G. C. Greubel, Nov 17 2018
(GAP) List([1..40], n -> 27*Fibonacci(n)+2*Fibonacci(n+1)); # G. C. Greubel, Nov 17 2018
CROSSREFS
Sequence in context: A132243 A125523 A156976 * A288615 A158342 A077286
KEYWORD
nonn,easy
AUTHOR
Kyle D. Balliet, Mar 04 2009
STATUS
approved