OFFSET
1,1
COMMENTS
If p contains a zero, then p is trivially a member.
LINKS
Robert Israel, Table of n, a(n) for n = 1..10000
FORMULA
a(n) ~ n log n. - Charles R Greathouse IV, Apr 22 2013
EXAMPLE
83 is prime, and 83 + 8*3 = 89 which is also prime. 103 is prime, and 103 + 1*0*3 = 103 is also prime. Thus 89 and 103 are members.
MAPLE
a := proc (n) local nn: nn := convert(ithprime(n), base, 10): if isprime(ithprime(n)+product(nn[j], j = 1 .. nops(nn))) = true then ithprime(n) else end if end proc: seq(a(n), n = 1 .. 180); # Emeric Deutsch, Mar 08 2009
MATHEMATICA
Select[Prime[Range[175]], PrimeQ[# + Times @@ IntegerDigits[#]] &] (* Jayanta Basu, Apr 22 2013 *)
PROG
(PARI) dprod(n)=n=digits(n); prod(i=1, #n, n[i])
is(n)=isprime(n) && isprime(n+dprod(n)) \\ Charles R Greathouse IV, Dec 27 2013
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Kyle D. Balliet, Mar 04 2009
EXTENSIONS
More terms from Emeric Deutsch, Mar 08 2009
STATUS
approved