login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A157646 Positive numbers y such that y^2 is of the form x^2 + (x+31)^2 with integer x. 4
25, 31, 41, 109, 155, 221, 629, 899, 1285, 3665, 5239, 7489, 21361, 30535, 43649, 124501, 177971, 254405, 725645, 1037291, 1482781, 4229369, 6045775, 8642281, 24650569, 35237359, 50370905, 143674045, 205378379, 293583149, 837393701 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

(-7,a(1)) and (A118674(n), a(n+1)) are solutions (x, y) to the Diophantine equation x^2+(x+31)^2 = y^2.

Lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).

Lim_{n -> infinity} a(n)/a(n-1) = (33+8*sqrt(2))/31 for n mod 3 = {0, 2}.

Lim_{n -> infinity} a(n)/a(n-1) = (1539+850*sqrt(2))/31^2 for n mod 3 = 1.

For the generic case x^2+(x+p)^2=y^2 with p=2*m^2-1 a prime number in A066436, m>=2, the x values are given by the sequence defined by: a(n)=6*a(n-3)-a(n-6)+2p with a(1)=0, a(2)=2m+1, a(3)=6m^2-10m+4, a(4)=3p, a(5)=6m^2+10m+4, a(6)=40m^2-58m+21.Y values are given by the sequence defined by: b(n)=6*b(n-3)-b(n-6) with b(1)=p, b(2)=2m^2+2m+1, b(3)=10m^2-14m+5, b(4)=5p, b(5)=10m^2+14m+5, b(6)=58m^2-82m+29. - Mohamed Bouhamida, Sep 09 2009

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..1000

Index entries for linear recurrences with constant coefficients, signature (0,0,6,0,0,-1).

FORMULA

a(n) = 6*a(n-3) - a(n-6) for n > 6; a(1)=25, a(2)=31, a(3)=41, a(4)=109, a(5)=155, a(6)=221.

G.f.: (1-x)*(25 + 56*x + 97*x^2 + 56*x^3 + 25*x^4)/(1 - 6*x^3 + x^6).

a(3*k-1) = 31*A001653(k) for k >= 1.

EXAMPLE

(-7, a(1)) = (-7, 25) is a solution: (-7)^2+(-7+31)^2 = 49+576 = 625 = 25^2.

(A118674(1), a(2)) = (0, 31) is a solution: 0^2+(0+31)^2 = 961 = 31^2.

(A118674(3), a(4)) = (60, 109) is a solution: 60^2+(60+31)^2 = 3600+8281 = 11881 = 109^2.

MATHEMATICA

LinearRecurrence[{0, 0, 6, 0, 0, -1}, {25, 31, 41, 109, 155, 221}, 40] (* Harvey P. Dale, Oct 12 2017 *)

PROG

(PARI) {forstep(n=-8, 840000000, [1, 3], if(issquare(2*n^2+62*n+961, &k), print1(k, ", ")))};

(MAGMA) I:=[25, 31, 41, 109, 155, 221]; [n le 6 select I[n] else 6*Self(n-3) - Self(n-6): n in [1..50]]; // G. C. Greubel, Mar 31 2018

CROSSREFS

Cf. A118674, A001653, A002193 (decimal expansion of sqrt(2)), A156035 (decimal expansion of 3+2*sqrt(2)), A157647 (decimal expansion of (33+8*sqrt(2))/31), A157648 (decimal expansion of (1539+850*sqrt(2))/31^2).

Sequence in context: A167324 A307283 A184042 * A198003 A039323 A043146

Adjacent sequences:  A157643 A157644 A157645 * A157647 A157648 A157649

KEYWORD

nonn,easy

AUTHOR

Klaus Brockhaus, Mar 11 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 30 04:54 EDT 2020. Contains 334711 sequences. (Running on oeis4.)