login
A157613
a(n) = 2662*n + 22.
3
2684, 5346, 8008, 10670, 13332, 15994, 18656, 21318, 23980, 26642, 29304, 31966, 34628, 37290, 39952, 42614, 45276, 47938, 50600, 53262, 55924, 58586, 61248, 63910, 66572, 69234, 71896, 74558, 77220, 79882, 82544, 85206, 87868, 90530
OFFSET
1,1
COMMENTS
The identity (29282*n^2 + 484*n + 1)^2 - (121*n^2 + 2*n)*(2662*n + 22)^2 = 1 can be written as A157614(n)^2 - A181679(n)*a(n)^2 = 1 (see also Bruno Berselli's comment in A181679). - Vincenzo Librandi, Feb 21 2012
FORMULA
From Vincenzo Librandi, Feb 21 2012: (Start)
G.f.: x*(2684 - 22*x)/(1-x)^2;
a(n) = 2*a(n-1) - a(n-2). (End)
MATHEMATICA
LinearRecurrence[{2, -1}, {2684, 5346}, 50] (* Vincenzo Librandi, Feb 21 2012 *)
2662 Range[40] + 22 (* Wesley Ivan Hurt, Nov 14 2023 *)
PROG
(Magma) I:=[2684, 5346]; [n le 2 select I[n] else 2*Self(n-1)-Self(n-2): n in [1..50]]; // Vincenzo Librandi, Feb 21 2012
(PARI) for(n=1, 50, print1(2662*n + 22", ")); \\ Vincenzo Librandi, Feb 21 2012
CROSSREFS
Sequence in context: A236594 A217335 A243993 * A233899 A350184 A186833
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 03 2009
STATUS
approved