

A157532


a(1) = 2; for n > 1, a(n) = 3.


7



2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

a(n) = number of neighboring natural numbers of n (e.g., n, n1, n+1).
a(n) = A158799(n) for n >= 1.  Jaroslav Krizek, Nov 18 2009
Also decimal expansion of 7/3.  Natan Arie' Consigli, May 02 2015
Decimal expansion of Sum_{i>=0} (4/7)^i.  Bruno Berselli, Aug 23 2017


LINKS

Table of n, a(n) for n=1..95.


FORMULA

a(n) = 1[0]1[1]1...1[n1]1[n]1, where [0] is zeration or successor (y[0]x = x+1), [1] addition, [2] multiplication, [3] exponentiation, [4] repeated exponentiation, etc.  Natan Arie' Consigli, May 02 2015
G.f.: x*(2+x)/(1x).  Robert Israel, May 07 2015


EXAMPLE

a(4) = 1[0]1[1]1[2]1[3]1[4]1 = '1+1*1^1^^1 = 3.  Natan Arie' Consigli, May 02 2015


MATHEMATICA

{2}~Join~Table[3, {120}] (* Michael De Vlieger, May 05 2015 *)


PROG

(PARI) A157532(n)=2+(n>1) \\ M. F. Hasler, Jul 30 2015


CROSSREFS

Cf. A254310 (3[0]3[1]...[n]3), A254225 (2[0]2[1]...[n]2).
Except for initial terms, the same as A156752 and A165020.  M. F. Hasler, Jul 30 2015
Sequence in context: A270533 A244919 A158799 * A065684 A065683 A065682
Adjacent sequences: A157529 A157530 A157531 * A157533 A157534 A157535


KEYWORD

nonn,easy,less,cons


AUTHOR

Jaroslav Krizek, Mar 02 2009


EXTENSIONS

More threes from R. J. Mathar, Mar 14 2009; truncated to three lines by M. F. Hasler, Jul 30 2015


STATUS

approved



