%I #12 Oct 05 2023 16:54:28
%S 46489,46889,48649,48869,64489,64849,68449,68489,84649,84869,88469,
%T 444869,448969,449689,468499,468869,468889,468899,469849,486449,
%U 486869,486949,488689,489689,489869,496849,496889,498469,498689,644489,644869
%N Primes using only the composite digits (4, 6, 8, 9) and all of them.
%C Subsequence of A051416.
%C There are no 4-digit terms so each term must have at least one repeating digit. - _Harvey P. Dale_, Oct 05 2023
%H Alois P. Heinz, <a href="/A157527/b157527.txt">Table of n, a(n) for n = 1..10000</a>
%p a := proc (n) if convert(convert(ithprime(n), base, 10), set) = {4, 6, 8, 9} then ithprime(n) else end if end proc: seq(a(n), n = 1 .. 53000); # _Emeric Deutsch_, Mar 03 2009
%p isA157527 := proc(n) local dgs ; if not isprime(n) then false; else dgs := convert(convert(n,base,10),set) ; if dgs intersect {4,6,8,9} <> {4,6,8,9} then false; elif dgs intersect {0,1,2,3,5,7} <> {} then false; else true; fi; fi; end: for n from 1 to 100000 do p := ithprime(n) ; if isA157527(p) then printf("%d,",p) ; fi; od: # _R. J. Mathar_, Mar 03 2009
%t With[{c={4,6,8,9}},Select[Flatten[Table[10 FromDigits/@Tuples[c,n]+9,{n,5}]],PrimeQ[#] && Intersection[c,IntegerDigits[#]]==c&]] (* _Harvey P. Dale_, Oct 05 2023 *)
%Y Cf. A051416, A138165, A034844, A108419.
%K nonn,base
%O 1,1
%A _Lekraj Beedassy_, Mar 02 2009, Mar 03 2009
%E Corrected and extended by numerous correspondents, Mar 04 2009