OFFSET
0,4
LINKS
G. C. Greubel, Rows n = 0..50 of the triangle, flattened
FORMULA
T(n, k) = n! * (d/dk) log( binomial(n, k) ).
T(n, 0) = A000254(n).
Sum_{k=0..n} T(n, k) = 0.
From G. C. Greubel, Jan 23 2022: (Start)
T(n, k) = n! * (psi(n-k+1) - psi(k+1)), where psi(x) = digamma(x).
T(n, k) = n! * (H(n-k) - H(k)), where H(n) = harmonic number(n).
T(n, n-k) = -T(n, k).
T(2*n, n) = 0. (End)
EXAMPLE
Triangle begins as:
0;
1, -1;
3, 0, -3;
11, 3, -3, -11;
50, 20, 0, -20, -50;
274, 130, 40, -40, -130, -274;
1764, 924, 420, 0, -420, -924, -1764;
13068, 7308, 3948, 1260, -1260, -3948, -7308, -13068;
109584, 64224, 38304, 18144, 0, -18144, -38304, -64224, -109584;
MATHEMATICA
T[n_, k_]:= n!*(PolyGamma[0, n-k+1] - PolyGamma[0, k+1]);
Table[T[n, k], {n, 0, 15}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, Jan 23 2022 *)
PROG
(Magma)
T:= func< n, k | Round(Factorial(n)*(Psi(n-k+1) - Psi(k+1))) >;
[T(n, k): k in [0..n], n in [0..15]]; // G. C. Greubel, Jan 23 2022
(Sage)
def T(n, k): return factorial(n)*(harmonic_number(n-k) - harmonic_number(k))
flatten([[T(n, k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Jan 23 2022
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Roger L. Bagula, Mar 02 2009
EXTENSIONS
Edited by G. C. Greubel, Jan 23 2022
STATUS
approved