login
A157515
a(n) = 1000*n - 20.
3
980, 1980, 2980, 3980, 4980, 5980, 6980, 7980, 8980, 9980, 10980, 11980, 12980, 13980, 14980, 15980, 16980, 17980, 18980, 19980, 20980, 21980, 22980, 23980, 24980, 25980, 26980, 27980, 28980, 29980, 30980, 31980, 32980, 33980, 34980
OFFSET
1,1
COMMENTS
The identity (5000*n^2 - 200*n + 1)^2 - (25*n^2 - n)*(1000*n - 20)^2 = 1 can be written as A157516(n)^2 - A157514(n)*a(n)^2 = 1 (see also the second part of the comment at A157514). - Vincenzo Librandi, Jan 26 2012
FORMULA
a(n) = 2*a(n-1) - a(n-2). - Vincenzo Librandi, Jan 26 2012
G.f.: x*(980 + 20*x)/(1-x)^2. - Vincenzo Librandi, Jan 26 2012
MATHEMATICA
LinearRecurrence[{2, -1}, {980, 1980}, 50] (* Vincenzo Librandi, Jan 26 2012 *)
1000*Range[40]-20 (* or *) Range[980, 40000, 1000](* Harvey P. Dale, Jul 03 2024 *)
PROG
(Magma) I:=[980, 1980]; [n le 2 select I[n] else 2*Self(n-1)-Self(n-2): n in [1..50]]; // Vincenzo Librandi, Jan 26 2012
(PARI) for(n=1, 22, print1(1000*n - 20", ")); \\ Vincenzo Librandi, Jan 26 2012
CROSSREFS
Sequence in context: A172158 A327825 A091080 * A188337 A109120 A128483
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 02 2009
STATUS
approved