login
A157476
a(n) = 2048n^2 + 128n + 1.
3
2177, 8449, 18817, 33281, 51841, 74497, 101249, 132097, 167041, 206081, 249217, 296449, 347777, 403201, 462721, 526337, 594049, 665857, 741761, 821761, 905857, 994049, 1086337, 1182721, 1283201, 1387777, 1496449, 1609217, 1726081, 1847041
OFFSET
1,1
COMMENTS
The identity (2048*n^2+128*n+1)^2-(16*n^2+n)*(512*n+16)^2=1 can be written as a(n)^2-A157474(n)*A157475(n)^2=1. [rewritten by Bruno Berselli, Aug 22 2011]
This is the case s=4 of the identity (8*n^2*s^4+8*n*s^2+1)^2 - (n^2*s^2+n)*(8*n*s^3+4*s)^2 = 1. - Bruno Berselli, Jan 25 2012
FORMULA
From Harvey P. Dale, Aug 15 2011: (Start)
G.f.: x*(-x^2-1918*x-2177)/(x-1)^3.
a(1)=2177, a(2)=8449, a(3)=18817, a(n)=3*a(n-1)-3*a(n-2)+a(n-3). (End)
MATHEMATICA
Table[2048n^2+128n+1, {n, 30}] (* or *) LinearRecurrence[{3, -3, 1}, {2177, 8449, 18817}, 30] (* Harvey P. Dale, Aug 15 2011 *)
PROG
(PARI) a(n)=2048*n^2+128*n+1 \\ Charles R Greathouse IV, Jun 17 2017
CROSSREFS
Sequence in context: A185801 A170776 A250240 * A157853 A072141 A008918
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 01 2009
STATUS
approved