Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #29 Mar 19 2023 08:21:51
%S 528,1040,1552,2064,2576,3088,3600,4112,4624,5136,5648,6160,6672,7184,
%T 7696,8208,8720,9232,9744,10256,10768,11280,11792,12304,12816,13328,
%U 13840,14352,14864,15376,15888,16400,16912,17424,17936,18448,18960
%N a(n) = 512n + 16.
%C The identity (2048*n^2+128*n+1)^2-(16*n^2+n)*(512*n+16)^2=1 can be written as A157476(n)^2-A157474(n)*a(n)^2=1 (see also second comment in A157476). [rewritten by _Bruno Berselli_, Aug 22 2011]
%H Vincenzo Librandi, <a href="/A157475/b157475.txt">Table of n, a(n) for n = 1..10000</a>
%H Vincenzo Librandi, <a href="http://mathforum.org/kb/message.jspa?messageID=5785989&tstart=0">X^2-AY^2=1</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1).
%F G.f.: 16*x*(33-x)/(1-x)^2. - _Bruno Berselli_, Aug 22 2011
%F a(1)=528, a(2)=1040, a(n) = 2*a(n-1)-a(n-2). - _Harvey P. Dale_, Dec 07 2011
%t 512*Range[40]+16 (* or *) LinearRecurrence[{2,-1},{528,1040},40] (* _Harvey P. Dale_, Dec 07 2011 *)
%Y Cf. A157474, A157476.
%K nonn,easy
%O 1,1
%A _Vincenzo Librandi_, Mar 01 2009