login
A157475
a(n) = 512n + 16.
3
528, 1040, 1552, 2064, 2576, 3088, 3600, 4112, 4624, 5136, 5648, 6160, 6672, 7184, 7696, 8208, 8720, 9232, 9744, 10256, 10768, 11280, 11792, 12304, 12816, 13328, 13840, 14352, 14864, 15376, 15888, 16400, 16912, 17424, 17936, 18448, 18960
OFFSET
1,1
COMMENTS
The identity (2048*n^2+128*n+1)^2-(16*n^2+n)*(512*n+16)^2=1 can be written as A157476(n)^2-A157474(n)*a(n)^2=1 (see also second comment in A157476). [rewritten by Bruno Berselli, Aug 22 2011]
FORMULA
G.f.: 16*x*(33-x)/(1-x)^2. - Bruno Berselli, Aug 22 2011
a(1)=528, a(2)=1040, a(n) = 2*a(n-1)-a(n-2). - Harvey P. Dale, Dec 07 2011
MATHEMATICA
512*Range[40]+16 (* or *) LinearRecurrence[{2, -1}, {528, 1040}, 40] (* Harvey P. Dale, Dec 07 2011 *)
CROSSREFS
Sequence in context: A158364 A232885 A085329 * A373285 A158365 A076580
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 01 2009
STATUS
approved