login
A157470
Decimal expansion of (99+14*sqrt(2))/97.
4
1, 2, 2, 4, 7, 3, 1, 8, 5, 4, 3, 6, 3, 1, 2, 7, 1, 2, 0, 4, 4, 5, 6, 0, 4, 5, 5, 8, 1, 3, 3, 3, 5, 8, 4, 8, 5, 5, 6, 6, 7, 5, 6, 7, 6, 5, 5, 1, 8, 3, 2, 2, 4, 0, 2, 3, 1, 4, 1, 5, 9, 9, 6, 2, 1, 8, 4, 2, 2, 9, 4, 2, 9, 8, 8, 1, 1, 2, 8, 8, 5, 0, 9, 6, 8, 0, 9, 7, 1, 6, 9, 9, 0, 2, 9, 5, 8, 5, 7, 7, 5, 0, 8, 1, 4
OFFSET
1,2
COMMENTS
lim_{n -> infinity} b(n)/b(n-1) = (99+14*sqrt(2))/97 for n mod 3 = {1, 2}, b = A129836.
lim_{n -> infinity} b(n)/b(n-1) = (99+14*sqrt(2))/97 for n mod 3 = {0, 2}, b = A157469.
LINKS
FORMULA
Equals (14+sqrt(2))/(14-sqrt(2)).
EXAMPLE
(99+14*sqrt(2))/97 = 1.22473185436312712044...
MAPLE
with(MmaTranslator[Mma]): Digits:=100:
RealDigits(evalf((99+14*sqrt(2))/97))[1]; # Muniru A Asiru, Mar 31 2018
MATHEMATICA
RealDigits[(99+14*Sqrt[2])/97, 10, 100][[1]] (* G. C. Greubel, Mar 30 2018 *)
PROG
(PARI) (99+14*sqrt(2))/97 \\ G. C. Greubel, Mar 30 2018
(Magma) (99+14*Sqrt(2))/97; // G. C. Greubel, Mar 30 2018
CROSSREFS
Cf. A129836, A157469, A002193 (decimal expansion of sqrt(2)), A157471 (decimal expansion of (19491+12070*sqrt(2))/97^2).
Sequence in context: A354702 A350764 A249758 * A120280 A212362 A209142
KEYWORD
cons,nonn,easy
AUTHOR
Klaus Brockhaus, Mar 12 2009
STATUS
approved