login
A157447
a(n) = 512*n - 16.
3
496, 1008, 1520, 2032, 2544, 3056, 3568, 4080, 4592, 5104, 5616, 6128, 6640, 7152, 7664, 8176, 8688, 9200, 9712, 10224, 10736, 11248, 11760, 12272, 12784, 13296, 13808, 14320, 14832, 15344, 15856, 16368, 16880, 17392, 17904, 18416, 18928
OFFSET
1,1
COMMENTS
The identity (2048*n^2 - 128*n + 1)^2 - (16*n^2 - n)*(512*n - 16)^2 = 1 can be written as A157448(n)^2 - A157446(n)*a(n)^2 = 1 (see also second comment at A157446). - Vincenzo Librandi, Jan 26 2012
FORMULA
a(n) = 2*a(n-1) - a(n-2). - Vincenzo Librandi, Jan 26 2012
G.f.: x*(16*x + 496)/(x-1)^2. - Vincenzo Librandi, Jan 26 2012
MATHEMATICA
LinearRecurrence[{2, -1}, {496, 1008}, 40] (* Vincenzo Librandi, Jan 26 2012 *)
512*Range[50]-16 (* Harvey P. Dale, Apr 09 2019 *)
PROG
(Magma) I:=[496, 1008]; [n le 2 select I[n] else 2*Self(n-1)-Self(n-2): n in [1..50]]; // Vincenzo Librandi, Jan 26 2012
(PARI) for(n=1, 22, print1(512*n - 16", ")); \\ Vincenzo Librandi, Jan 26 2012
CROSSREFS
Sequence in context: A333756 A179170 A345351 * A109477 A302366 A303083
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 01 2009
STATUS
approved