login
Decimal expansion of Sum_{q = semiprimes = A001358} 1/(q*2^q).
1

%I #6 Jun 26 2022 02:48:54

%S 0,1,8,5,5,0,2,6,6,2,7,9,9,4,9,7,0,6,5,8,9,2,6,5,4,8,5,2,8,8,2,0,4,7,

%T 7,7,4,3,0,1,6,8,9,3,1,8,6,9,2,7,5,1,2,7,0,3,2,8,2,8,9,3,0,0,3,5,0,1,

%U 5,8,8,4,7,7,6,3,7,1,6,5,7,3,8,8,0,1,5,8,5,4,6,3,6,6,7,7,0,3,8,1,7,4,1,8,3

%N Decimal expansion of Sum_{q = semiprimes = A001358} 1/(q*2^q).

%H R. J. Mathar, <a href="http://arxiv.org/abs/0803.0900">Series of reciprocal powers of k-almost primes</a>, arxiv:0803.0900, eq. (66).

%F A002162 = Sum_{n>=1} 1/(n*2^n) = 1/2 + A157413 + this_constant_here + equivalent terms of higher order k-almost primes.

%e 0.0185502662799497065892654852882047774... = 1/(4*2^4)+1/(6*2^6)+1/(9*2^9)+1/(10*2^10)+... = Sum_{i>=1} 1/(A001358(i)*2^A001358(i)).

%Y Cf. A001358.

%K cons,nonn

%O 0,3

%A _R. J. Mathar_, Feb 28 2009