login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A157412 Triangular read by rows: T(n,m) = J(prime(n),prime(m)) where J is the Jacobi symbol. Each row starts with prime(2) = 3. 1
0, -1, 0, 1, -1, 0, -1, 1, 1, 0, 1, -1, -1, -1, 0, -1, -1, -1, -1, 1, 0, 1, 1, -1, -1, -1, 1, 0, -1, -1, 1, 1, 1, -1, 1, 0, -1, 1, 1, -1, 1, -1, -1, 1, 0, 1, 1, -1, 1, -1, -1, -1, 1, -1, 0 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

2,1

COMMENTS

Row sums are {0, -1, 0, 1, -2, -3, 0, 1, 0, -1,...}

LINKS

Table of n, a(n) for n=2..56.

EXAMPLE

0;

-1, 0;

1, -1, 0;

-1, 1, 1, 0;

1, -1, -1, -1, 0;

-1, -1, -1, -1, 1, 0;

1, 1, -1, -1, -1, 1, 0;

-1, -1, 1, 1, 1, -1, 1, 0;

-1, 1, 1, -1, 1, -1, -1, 1, 0;

1, 1, -1, 1, -1, -1, -1, 1, -1, 0;

MAPLE

for n from 2 to 11 do for m from 2 to n do printf("%d, ", numtheory[jacobi](ithprime(n), ithprime(m))) ; od: od:

MATHEMATICA

Flatten[Table[JacobiSymbol[Prime[n], Prime[m]], {n, 2, 11}, {m, 2, n}]](* Zak Seidov, Mar 29 2011 *)

PROG

(PARI) forprime(p=3, 19, forprime(q=3, p, print1(kronecker(p, q)", "))) \\ Charles R Greathouse IV, Oct 31 2011

CROSSREFS

Cf. A110242.

Sequence in context: A174282 A123640 A022924 * A023532 A030308 A280237

Adjacent sequences:  A157409 A157410 A157411 * A157413 A157414 A157415

KEYWORD

tabl,sign,easy

AUTHOR

Roger L. Bagula, Feb 28 2009

EXTENSIONS

Edited by the Associate Editors of the OEIS, Apr 22 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 16 08:03 EDT 2018. Contains 316259 sequences. (Running on oeis4.)