login
A157412
Triangular read by rows: T(n,m) = J(prime(n),prime(m)) where J is the Jacobi symbol. Each row starts with prime(2) = 3.
1
0, -1, 0, 1, -1, 0, -1, 1, 1, 0, 1, -1, -1, -1, 0, -1, -1, -1, -1, 1, 0, 1, 1, -1, -1, -1, 1, 0, -1, -1, 1, 1, 1, -1, 1, 0, -1, 1, 1, -1, 1, -1, -1, 1, 0, 1, 1, -1, 1, -1, -1, -1, 1, -1, 0
OFFSET
2,1
COMMENTS
Row sums are {0, -1, 0, 1, -2, -3, 0, 1, 0, -1,...}
EXAMPLE
0;
-1, 0;
1, -1, 0;
-1, 1, 1, 0;
1, -1, -1, -1, 0;
-1, -1, -1, -1, 1, 0;
1, 1, -1, -1, -1, 1, 0;
-1, -1, 1, 1, 1, -1, 1, 0;
-1, 1, 1, -1, 1, -1, -1, 1, 0;
1, 1, -1, 1, -1, -1, -1, 1, -1, 0;
MAPLE
for n from 2 to 11 do for m from 2 to n do printf("%d, ", numtheory[jacobi](ithprime(n), ithprime(m))) ; od: od:
MATHEMATICA
Flatten[Table[JacobiSymbol[Prime[n], Prime[m]], {n, 2, 11}, {m, 2, n}]](* Zak Seidov, Mar 29 2011 *)
PROG
(PARI) forprime(p=3, 19, forprime(q=3, p, print1(kronecker(p, q)", "))) \\ Charles R Greathouse IV, Oct 31 2011
CROSSREFS
Cf. A110242.
Sequence in context: A123640 A022924 A295893 * A373223 A023532 A226520
KEYWORD
tabl,sign,easy
AUTHOR
Roger L. Bagula, Feb 28 2009
EXTENSIONS
Edited by the Associate Editors of the OEIS, Apr 22 2009
STATUS
approved