login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A157409 Minimum of { k > 0 : [2^n / 3^k] mod 6 = 3 } if such k exists, 0 otherwise. 0
0, 0, 0, 0, 0, 2, 1, 0, 3, 0, 0, 3, 1, 3, 0, 0, 2, 0, 1, 5, 4, 12, 7, 2, 1, 11, 0, 15, 10, 4, 1, 4, 10, 3, 2, 9, 1, 4, 11, 15, 10, 2, 1, 7, 4, 7, 3, 7, 1, 21, 12, 4, 2, 4, 1, 6, 5, 8, 7, 2, 1, 4, 3 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,6

COMMENTS

It is conjectured that a(n) = 0 only for n in {0,1,2,3,4,7,9,10,14,15,17,26}.

Let N, K defined by: K = max {a(n) for all n <= N}. The following pairs (N : K) for N > 26 mark points where K increases.

(27 : 15), (49 : 21), (110 : 29), (118 : 34), (165 : 58), (2769 : 61), (2837 : 65), (3661 : 70), (14354 : 74), (59913 : 103), (1786453 : 112), (2702893 : 117), (2712849 : 121).

LINKS

Table of n, a(n) for n=0..62.

Peter Luschny, An arithmetic conjecture.

EXAMPLE

a(20) = 4 because MOD([2^20 / 3^4], 6) = 3.

MAPLE

a := proc(m) local l, i, u, A; A := convert(2^m, base, 3); u := 0;

for i from 0 to nops(A)-1 do if A[i+1] = 1 then u := u + 1 ;

elif A[i+1] = 0 then if type(u, odd) then RETURN(i) fi fi od;

0 end: seq(a(i), i=0..62);

CROSSREFS

Sequence in context: A136255 A194812 A159813 * A245960 A178616 A165252

Adjacent sequences:  A157406 A157407 A157408 * A157410 A157411 A157412

KEYWORD

easy,nonn

AUTHOR

Peter Luschny, Mar 06 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified March 24 02:10 EDT 2017. Contains 283984 sequences.