%I #11 Sep 20 2024 16:32:06
%S 1,3,9,9,1,6,9,1,1,8,2,9,6,6,9,2,0,4,0,2,7,9,4,1,2,2,1,7,9,5,8,2,1,8,
%T 7,5,2,1,0,9,3,8,6,7,8,8,3,4,7,4,4,6,5,0,8,8,1,1,4,3,8,5,1,3,1,0,8,0,
%U 7,7,6,1,0,4,4,6,3,4,6,1,8,7,3,3,7,4,6,0,3,2,8,5,9,1,7,4,2,4,4,4,6,4,7,6,1
%N Decimal expansion of (297 + 68*sqrt(2))/281.
%C lim_{n -> infinity} b(n)/b(n-1) = (297+68*sqrt(2))/281 for n mod 3 = {1, 2}, b = A129626.
%C lim_{n -> infinity} b(n)/b(n-1) = (297+68*sqrt(2))/281 for n mod 3 = {0, 2}, b = A157348.
%H G. C. Greubel, <a href="/A157349/b157349.txt">Table of n, a(n) for n = 1..10000</a>
%F (297 + 68*sqrt(2))/281 = (17 + 2*sqrt(2))/(17 - 2*sqrt(2)).
%e (297 + 68*sqrt(2))/281 = 1.39916911829669204027...
%t RealDigits[(297 + 68*Sqrt[2])/281, 10, 100][[1]] (* _G. C. Greubel_, Feb 01 2018 *)
%o (PARI) (297+68*sqrt(2))/281 \\ _G. C. Greubel_, Feb 01 2018
%o (Magma) (297+68*Sqrt(2))/281; // _G. C. Greubel_, Feb 01 2018
%Y Cf. A129626, A157348, A002193 (decimal expansion of sqrt(2)), A157350 (decimal expansion of (130803+73738*sqrt(2))/281^2).
%K cons,nonn
%O 1,2
%A _Klaus Brockhaus_, Apr 12 2009