login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A157335 Expansion of 1/( (1+x)*(1-7*x+x^2) ). 2
1, 6, 42, 287, 1968, 13488, 92449, 633654, 4343130, 29768255, 204034656, 1398474336, 9585285697, 65698525542, 450304393098, 3086432226143, 21154721189904, 144996616103184, 993821591532385, 6811754524623510, 46688460080832186, 320007466041201791 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Colin Barker, Table of n, a(n) for n = 0..1000

P. Barry, Symmetric Third-Order Recurring Sequences, Chebyshev Polynomials, and Riordan Arrays, JIS 12 (2009) 09.8.6

Index entries for linear recurrences with constant coefficients, signature (6,6,-1).

FORMULA

a(n) = A152119(n+1) * A152119(n+2).

a(n) = Sum_{k=0..floor(n/2)} (-1)^(n-k)*U(k,7/2) where U(n,x) is the n-th-Chebyshev polynomial of the second kind;

a(n) = Sum_{k=0..2n} F(n+1-floor(k/2))*F(n+1-mod(k,2)-floor(k/2))*A152119(k+1).

a(n) = 7*a(n-1) - a(n-2) + (-1)^n, n > 1. - Vincenzo Librandi, Mar 13 2011

9*a(n) = 8*A004187(n+1) - A004187(n) + (-1)^n. - R. J. Mathar, Mar 15 2011

a(n)= ((-1)^(n+1)/3)*Sum_{k=0..n+1} (-1)^k*Fibonacci(4*k). - Gary Detlefs, Jan 21 2013

a(n) = 6*a(n-1) + 6*a(n-2) - a(n-3), with a(0)=1, a(1)=6, a(2)=42. - Harvey P. Dale, Oct 25 2014

a(n) = (2^(-n)*(5*(-2)^n + (20-9*sqrt(5))*(7-3*sqrt(5))^n + (7+3*sqrt(5))^n*(20+9*sqrt(5))))/45. - Colin Barker, Mar 05 2016

MATHEMATICA

CoefficientList[Series[1/((1+x)(1-7x+x^2)), {x, 0, 20}], x] (* or *) LinearRecurrence[{6, 6, -1}, {1, 6, 42}, 20] (* Harvey P. Dale, Oct 25 2014 *)

PROG

(PARI) Vec(1/(x^3-6*x^2-6*x+1) + O(x^30)) \\ Colin Barker, Mar 05 2016

(MAGMA) I:=[0, 6, 42]; [n le 3 select I[n] else 6*Self(n-1) + 6*Self(n-2) - Self(n-3): n in [1..30]]; // G. C. Greubel, Feb 01 2018

CROSSREFS

Sequence in context: A229247 A105482 A242158 * A057089 A110711 A156361

Adjacent sequences:  A157332 A157333 A157334 * A157336 A157337 A157338

KEYWORD

easy,nonn

AUTHOR

Paul Barry, Feb 27 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 22 05:11 EST 2019. Contains 319353 sequences. (Running on oeis4.)