login
A157315
G.f.: A(x) = sin( Sum_{n>=0} 2^((2n+1)^2) * C(2n,n)/4^n * x^(2n+1)/(2n+1) ); alternating zeros omitted.
2
2, 84, 2516412, 25131689308776, 73459034127708442263660, 59475400379433834763260101514326040, 12984879931670595437855043594849682375333268239320
OFFSET
1,1
COMMENTS
Compare g.f. to the expansion of the inverse sine of x:
arcsin(x) = Sum_{n>=0} C(2n,n)/4^n * x^(2n+1)/(2n+1).
LINKS
EXAMPLE
G.f.: A(x) = 2*x + 84*x^3 + 2516412*x^5 + 25131689308776*x^7 + ...
The inverse sine of A(x) begins:
arcsin(A(x)) = 2*x + 2^9*(2/4)*x^3/3 + 2^25*(6/4^2)*x^5/5 + 2^49*(20/4^3)*x^7/7 + 2^81*(70/4^4)*x^9/9 + ...
MAPLE
m := 30;
S := series( sin(add(2^(4*j^2+2*j+1)*binomial(2*j, j)*x^(2*j+1)/(2*j+1), j = 0..m+2)), x, m+1);
seq(coeff(S, x, 2*j+1), j = 0..m/2); # G. C. Greubel, Mar 16 2021
MATHEMATICA
With[{m = 30}, CoefficientList[Series[Sin[Sum[2^(4*n^2+2*n+1)*((n+1)/(2*n+1)) *CatalanNumber[n]*x^(2*n+1), {n, 0, m+2}]], {x, 0, m}], x]][[2 ;; ;; 2 ]] (* G. C. Greubel, Mar 16 2021 *)
PROG
(PARI) {a(n)=polcoeff(sin(sum(m=0, n\2, 2^((2*m+1)^2)*binomial(2*m, m)/4^m*x^(2*m+1)/(2*m+1))+x*O(x^n)), n)}
(Magma)
m:=30;
R<x>:=PowerSeriesRing(Rationals(), m);
b:=Coefficients(R!( Sin( (&+[2^(4*j^2+2*j+1)*Binomial(2*j, j)*x^(2*j+1)/(2*j+1): j in [0..m+2]]) ) ));
[b[2*n-1]: n in [1..Floor((m-2)/2)]]; // G. C. Greubel, Mar 16 2021
(Sage)
m=30
def A157315_list(prec):
P.<x> = PowerSeriesRing(QQ, prec)
return P( sin( sum(2^(4*j^2+2*j+1)*binomial(2*j, j)*x^(2*j+1)/(2*j+1) for j in [0..m+2])) ).list()
a=A157315_list(m); [a[2*n+1] for n in (0..(m-2)/2)] # G. C. Greubel, Mar 16 2021
CROSSREFS
Cf. A000984 (C(2n, n)), A136558, A155200.
Sequence in context: A318128 A181119 A293707 * A244947 A078166 A101578
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 17 2009
STATUS
approved