login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A157307 G.f. A(x) satisfies the condition that both A(x) and F(x) = A(x/F(x)^2) have zeros for every other coefficient after initial terms; g.f. of dual sequence A157304 satisfies the same condition. 7
1, 1, 0, -7, 0, 242, 0, -17771, 0, 2189294, 0, -404590470, 0, 104785114020, 0, -36267349272243, 0, 16185534555969878, 0, -9056084951164614194, 0, 6210575966204050489916, 0, -5124228589785627978616702, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

LINKS

Table of n, a(n) for n=0..24.

FORMULA

For n>=1, [x^(2n+1)] 1/A(x)^(4n+1) = 0.

G.f. satisfies: A(x) = F(x*A(x)^2) where F(x) = A(x/F(x)^2) = sqrt(x/Series_Reversion(x*A(x)^2)) = g.f. of A157305.

G.f. satisfies: A(x) = G(x*A(x)) where G(x) = A(x/G(x)) = x/Series_Reversion(x*A(x)) = g.f. of A157306.

EXAMPLE

G.f.: A(x) = 1 + x - 7*x^3 + 242*x^5 - 17771*x^7 + 2189294*x^9 -+...

...

Let F(x) = A(x/F(x)^2) so that A(x) = F(x*A(x)^2) then

F(x) = 1 + x - 2*x^2 + 26*x^4 - 1378*x^6 + 141202*x^8 -+...

has alternating zeros in the coefficients (cf. A157305):

[1,1,-2,0,26,0,-1378,0,141202,0,-22716418,0,5218302090,0,...].

...

COEFFICIENTS IN ODD NEGATIVE POWERS OF G.F. A(x).

A^1 : [(1),1,0,-7,0,242,0,-17771,0,2189294,0,-404590470,0,...];

A^-1: [1,(-1),1,6,-13,-222,506,16932,-37709,-2127126,4595294,...];

A^-3: [1,-3,(6),11,-69,-537,2806,45282,-215781,-5963673,...];

A^-5: [1,-5,15,(0),-140,-601,6245,62380,-503935,-8911515,...];

A^-7: [1,-7,28,-35,(-182),-392,9968,65519,-860825,-10670499,...];

A^-9: [1,-9,45,-102,-135,(0),13128,54504,-1240416,-11070241,...];

A^-11:[1,-11,66,-209,77,341,(15158),31460,-1598696,-10074240,...];

A^-13:[1,-13,91,-364,546,221,16107,(0),-1899508,-7767240,...];

A^-15:[1,-15,120,-575,1380,-978,17040,-36375,(-2118030),...];

A^-17:[1,-17,153,-850,2703,-4114,20502,-76772,-2240175,(0),...];

...

When scaled, the coefficients shown above in parenthesis

forms the coefficients of the function F(x) = A(x/F(x)^2):

F: [1,-1/(-1),6/(-3),0,-182/(-7),0,15158/(-11),0,-2118030/(-15),0,...].

PROG

(PARI) {a(n)=local(A=[1, 1]); for(i=1, n, if(#A%2==0, A=concat(A, t); A[ #A]=-subst(Vec(serreverse(x/Ser(A)))[ #A], t, 0)); if(#A%2==1, A=concat(A, t); A[ #A]=-subst(Vec(x/serreverse(x*Ser(A)))[ #A], t, 0))); Vec(serreverse(x/Ser(A))/x)[n+1]}

CROSSREFS

Cf. A157305, A157306, A157302, A157303, A157304 (dual).

Sequence in context: A240822 A240810 A024094 * A036949 A059515 A136428

Adjacent sequences:  A157304 A157305 A157306 * A157308 A157309 A157310

KEYWORD

sign

AUTHOR

Paul D. Hanna, Feb 28 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 21 22:24 EDT 2019. Contains 323467 sequences. (Running on oeis4.)