login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A157305 G.f. A(x) satisfies the condition that both A(x) and F(x) = A(x*F(x)^2) have zeros for every other coefficient after initial terms; dual sequence A157302 satisfies the same condition. 9
1, 1, -2, 0, 26, 0, -1378, 0, 141202, 0, -22716418, 0, 5218302090, 0, -1619288968386, 0, 653379470919714, 0, -333014944014777730, 0, 209463165121436380282, 0, -159492000935562428176162, 0, 144654795258284936534929586, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Table of n, a(n) for n=0..25.

FORMULA

For n>=2, [x^(2n)] A(x)^(4n+1) = 0.

G.f. satisfies: A(x) = F(x/A(x)^2) where F(x) = A(x*F(x)^2) = sqrt(Series_Reversion(x/A(x)^2)/x) = g.f. of A157307.

G.f. satisfies: A(x) = G(x/A(x)) where G(x) = A(x*G(x)) = Series_Reversion(x/A(x))/x = g.f. of A157306.

EXAMPLE

G.f.: A(x) = 1 + x - 2*x^2 + 26*x^4 - 1378*x^6 + 141202*x^8 -+...

...

Let F(x) = A(x*F(x)^2) so that A(x) = F(x/A(x)^2) then

F(x) = 1 + x - 7*x^3 + 242*x^5 - 17771*x^7 + 2189294*x^9 -+...

has alternating zeros in the coefficients (cf. A157304):

[1,1,0,-7,0,242,0,-17771,0,2189294,0,-404590470,0,104785114020,0,...].

...

COEFFICIENTS IN ODD POWERS OF G.F. A(x).

A^1: [(1),1,-2,0,26,0,-1378,0,141202,0,-22716418,0,...];

A^3: [1,(3),-3,-11,84,168,-4376,-8580,438348,865776,...];

A^5: [1,5,(0),-30,115,601,-7120,-30280,726680,2987400,...];

A^7: [1,7,7,(-49),91,1253,-8743,-65519,964768,6410880,...];

A^9: [1,9,18,-60,(0),1998,-8418,-112284,1106775,11070241,...];

A^11:[1,11,33,-55,-154,(2662),-5566,-166034,1108657,...];

A^13:[1,13,52,-26,-351,3055,(0),-220116,935051,23169939,...];

A^15:[1,15,75,35,-555,3003,7995,(-266565),565635,29818365,...];

A^17:[1,17,102,136,-714,2380,17646,-297160,(0),36161142,...];

A^19:[1,19,133,285,-760,1140,27740,-304608,-739670,(41596586),...];

...

When scaled, the coefficients shown above in parenthesis

forms the coefficients of the function F(x) = A(x*F(x)^2):

F: [1,3/3,0,-49/7,0,2662/11,0,-266565/15,0,41596586/19,0,...].

PROG

(PARI) {a(n)=local(A=[1, 1]); for(i=1, n, if(#A%2==0, A=concat(A, t); A[ #A]=-subst(Vec(serreverse(x/Ser(A)))[ #A], t, 0)); if(#A%2==1, A=concat(A, t); A[ #A]=-subst(Vec(x/serreverse(x*Ser(A)))[ #A], t, 0))); Vec(x/serreverse(x*Ser(A)))[n+1]}

CROSSREFS

Cf. A157306, A157307, A157302 (dual), A157303, A157304.

Sequence in context: A097563 A158045 A157304 * A306416 A156459 A007218

Adjacent sequences:  A157302 A157303 A157304 * A157306 A157307 A157308

KEYWORD

sign

AUTHOR

Paul D. Hanna, Feb 28 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 21 22:24 EDT 2019. Contains 323467 sequences. (Running on oeis4.)