login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A157304 G.f. A(x) satisfies the condition that both A(x) and F(x) = A(x/F(x)^2) have zeros for every other coefficient after initial terms; g.f. of dual sequence A157307 satisfies the same condition. 9
1, 1, 2, 0, -26, 0, 1378, 0, -141202, 0, 22716418, 0, -5218302090, 0, 1619288968386, 0, -653379470919714, 0, 333014944014777730, 0, -209463165121436380282, 0, 159492000935562428176162, 0, -144654795258284936534929586, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

After initial 2 terms, reversing signs yields the complementary sequence A157305, which has very similar properties.

LINKS

Table of n, a(n) for n=0..25.

FORMULA

For n>=1, [x^(2n)] 1/A(x)^(4n-1) = 0.

G.f. satisfies: A(x) = F(x*A(x)^2) where F(x) = A(x/F(x)^2) = sqrt(x/Series_Reversion(x*A(x)^2)) = g.f. of A157302.

G.f. satisfies: A(x) = G(x*A(x)) where G(x) = A(x/G(x)) = x/Series_Reversion(x*A(x)) = g.f. of A157303.

EXAMPLE

G.f.: A(x) = 1 + x + 2*x^2 - 26*x^4 + 1378*x^6 - 141202*x^8 +-...

...

Let F(x) = A(x/F(x)^2) so that A(x) = F(x*A(x)^2) then

F(x) = 1 + x - 5*x^3 + 183*x^5 - 14352*x^7 + 1857199*x^9 -+...

has alternating zeros in the coefficients (cf. A157302):

[1,1,0,-5,0,183,0,-14352,0,1857199,0,-355082433,0,94134281460,0,...].

...

COEFFICIENTS IN ODD NEGATIVE POWERS OF G.F. A(x).

A^1 : [(1), 1,2,0,-26,0,1378,0,-141202,0,22716418,...];

A^-1: [1,(-1),-1,3,25,-57,-1397,2967,143057,...];

A^-3: [1,-3,(0),14,57,-333,-3880,18036,415665,...];

A^-5: [1,-5,5,(25),50,-766,-5370,44370,637275,...];

A^-7: [1,-7,14,28,(0),-1246,-5334,79148,770469,...];

A^-9: [1,-9,27,15,-81,(-1647),-3519,117981,784998,...];

A^-11:[1,-11,44,-22,-165,-1859,(0),155584,662046,...];

A^-13:[1,-13,65,-91,-208,-1820,4836,(186576),396942,...];

A^-15:[1,-15,90,-200,-150,-1548,10370,206280,(0),...];

A^-17:[1,-17,119,-357,85,-1173,15895,211395,-504577,(-31572383),...];

...

When scaled, the coefficients shown above in parenthesis

forms the coefficients of the function F(x) = A(x/F(x)^2):

F: [1,-1/(-1),0,25/(-5),0,-1647/(-9),0,186576/(-13),0,-31572383/(-17),...].

PROG

(PARI) {a(n)=local(A=[1, 1]); for(i=1, n, if(#A%2==1, A=concat(A, t); A[ #A]=-subst(Vec(serreverse(x/Ser(A)))[ #A], t, 0)); if(#A%2==0, A=concat(A, t); A[ #A]=-subst(Vec(x/serreverse(x*Ser(A)))[ #A], t, 0))); Vec(serreverse(x/Ser(A))/x)[n+1]}

CROSSREFS

Cf. A157302, A157303, A157305 (complement), A157306, A157307 (dual).

Sequence in context: A255162 A097563 A158045 * A157305 A306416 A156459

Adjacent sequences:  A157301 A157302 A157303 * A157305 A157306 A157307

KEYWORD

sign

AUTHOR

Paul D. Hanna, Feb 28 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 21 22:24 EDT 2019. Contains 323467 sequences. (Running on oeis4.)