login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A157293 Decimal expansion of Zeta(3)/Zeta(9). 0
1, 1, 9, 9, 6, 4, 7, 5, 3, 9, 6, 4, 7, 1, 3, 9, 7, 9, 0, 9, 4, 8, 0, 7, 8, 3, 0, 4, 8, 1, 0, 4, 0, 2, 3, 3, 0, 9, 9, 9, 8, 6, 5, 8, 5, 0, 2, 6, 2, 4, 3, 0, 8, 5, 3, 4, 7, 6, 0, 2, 7, 8, 1, 5, 5, 2, 4, 1, 9, 8, 3, 8, 0, 7, 7, 0, 9, 8, 1, 0, 0, 3, 6, 8, 4, 2, 0, 2, 4, 5, 8, 0, 1, 0, 9, 7, 8, 4, 7, 3, 1, 2, 3, 8, 8 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

The product_{p= primes = A000040} (1+1/p^3+1/p^6). The product over (1+2/p^3+1/p^6) equals A157289^2.

LINKS

Table of n, a(n) for n=1..105.

R. J. Mathar, Hardy-Littlewood constants embedded into infinite products over all positive integers, arXiv:0903.2514 [math.NT], eq. (23).

FORMULA

Equals A002117/A013667 = product_{i>=1} (1+1/A030078(i)+1/A030516(i)) .

EXAMPLE

1.19964753964713... = (1+1/2^3+1/2^6)*(1+1/3^3+1/3^6)*(1+1/5^3+1/5^6)*(1+1/7^3+1/7^6)*...

MAPLE

evalf(Zeta(3)/Zeta(9)) ;

CROSSREFS

Sequence in context: A175571 A019894 A262823 * A146487 A195790 A085984

Adjacent sequences:  A157290 A157291 A157292 * A157294 A157295 A157296

KEYWORD

cons,easy,nonn

AUTHOR

R. J. Mathar, Feb 26 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified June 20 22:14 EDT 2018. Contains 305614 sequences. (Running on oeis4.)