login
A157267
a(n) = 10368*n^2 - 4896*n + 577.
3
6049, 32257, 79201, 146881, 235297, 344449, 474337, 624961, 796321, 988417, 1201249, 1434817, 1689121, 1964161, 2259937, 2576449, 2913697, 3271681, 3650401, 4049857, 4470049, 4910977, 5372641, 5855041, 6358177, 6882049, 7426657, 7992001, 8578081, 9184897, 9812449
OFFSET
1,1
COMMENTS
The identity (10368*n^2 - 4896*n + 577)^2 - (36*n^2 - 17*n + 2)*(1728*n - 408)^2 = 1 can be written as a(n)^2 - A157265(n)*A157266(n)^2 = 1. - Vincenzo Librandi, Jan 27 2012
This is the case s = 4*n - 1 of the identity (2*r^2 - 1)^2 - ((r^2 - 1)/144)*(24*r)^2 = 1, where r = 18*s + 9*i^(s*(s+1)) - (-1)^s - 9 and i = sqrt(-1). - Bruno Berselli, Jan 29 2012
FORMULA
From Vincenzo Librandi, Jan 27 2012: (Start)
G.f.: x*(6049 + 14110*x + 577*x^2)/(1-x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
E.g.f.: exp(x)*(10368*x^2 + 5472*x + 577) - 577. - Elmo R. Oliveira, Nov 09 2024
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {6049, 32257, 79201}, 40] (* Vincenzo Librandi, Jan 27 2012 *)
PROG
(Magma) I:=[6049, 32257, 79201]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Jan 27 2012
(PARI) for(n=1, 40, print1(10368*n^2 - 4896*n + 577", ")); \\ Vincenzo Librandi, Jan 27 2012
CROSSREFS
Sequence in context: A184195 A269935 A269899 * A283932 A209552 A238042
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Feb 26 2009
STATUS
approved