login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A157256 Primes p such that both p^5 - 6 and p^5 + 6 are prime. 1
1087, 3253, 4993, 9277, 11807, 14717, 15073, 17033, 20627, 24197, 26953, 29753, 31883, 33023, 33637, 36473, 38113, 40387, 40897, 41843, 43403, 52057, 58153, 62473, 66587, 67967, 70537, 83983, 99173, 99713, 102023, 108287, 117673, 124247 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

David A. Corneth, Table of n, a(n) for n = 1..4502

EXAMPLE

1087 is a term as 1087 is prime, 1087^5 - 6 = 1517566463014201 is prime and 1087^5 + 6 = 1517566463014213 is prime.

MATHEMATICA

q=5; lst={}; Do[p=Prime[n]; If[PrimeQ[p^q-q-1]&&PrimeQ[p^q+q+1], AppendTo[lst, p]], {n, 5*7!}]; lst

Select[Prime[Range[12000]], AllTrue[#^5+{6, -6}, PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Oct 04 2019 *)

PROG

(PARI) is(n) = isprime(n) && isprime(n^5 - 6) && isprime(n^5 + 6) \\ David A. Corneth, Oct 04 2019

CROSSREFS

Sequence in context: A010091 A206630 A191944 * A223429 A168661 A175698

Adjacent sequences: A157253 A157254 A157255 * A157257 A157258 A157259

KEYWORD

nonn,less

AUTHOR

Vladimir Joseph Stephan Orlovsky, Feb 26 2009

EXTENSIONS

Edited by David A. Corneth, Oct 04 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 3 00:23 EST 2022. Contains 358510 sequences. (Running on oeis4.)