login
Triangle T(n, k) = Eulerian(n*f(n, k) + 1, f(n, k)), where f(n, k) = k if k <= floor(n/2) otherwise n-k, read by rows.
2

%I #7 Sep 08 2022 08:45:41

%S 1,1,1,1,4,1,1,11,11,1,1,26,14608,26,1,1,57,152637,152637,57,1,1,120,

%T 1479726,251732291184,1479726,120,1,1,247,13824739,16871482830550,

%U 16871482830550,13824739,247,1,1,502,126781020,1103881308184906,113909683214485984529600,1103881308184906,126781020,502,1

%N Triangle T(n, k) = Eulerian(n*f(n, k) + 1, f(n, k)), where f(n, k) = k if k <= floor(n/2) otherwise n-k, read by rows.

%H G. C. Greubel, <a href="/A157221/b157221.txt">Rows n = 0..25 of the triangle, flattened</a>

%F T(n, k) = Eulerian(n*f(n, k) + 1, f(n, k)), where f(n, k) = k if k <= floor(n/2) otherwise n-k.

%e Triangle begins as:

%e 1;

%e 1, 1;

%e 1, 4, 1;

%e 1, 11, 11, 1;

%e 1, 26, 14608, 26, 1;

%e 1, 57, 152637, 152637, 57, 1;

%e 1, 120, 1479726, 251732291184, 1479726, 120, 1;

%e 1, 247, 13824739, 16871482830550, 16871482830550, 13824739, 247, 1;

%t f[n_, k_]:= If[k<=Floor[n/2], k, n-k];

%t Eulerian[n_, k_]:= Sum[(-1)^j*Binomial[n+1,j]*(k+1-j)^n, {j,0,k+1}];

%t T[n_, k_]:= Eulerian[n*f[n,k] + 1, f[n,k]];

%t Table[Eulerian[n*f[n, k] +1, f[n, k]], {n,0,10}, {k,0,n}]//Flatten

%o (Magma)

%o f:= func< n,k | k le Floor(n/2) select k else n-k >;

%o Eulerian:= func< n,k | (&+[(-1)^j*Binomial(n+1,j)*(k-j+1)^n: j in [0..k+1]]) >;

%o [Eulerian(n*f(n,k)+1, f(n,k)): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Jan 10 2022

%o (Sage)

%o def f(n,k): return k if (k <= (n//2)) else n-k

%o def Eulerian(n,k): return sum((-1)^j*binomial(n+1,j)*(k-j+1)^n for j in (0..k+1))

%o flatten([[Eulerian(n*f(n,k)+1, f(n,k)) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Jan 10 2022

%Y Cf. A008292, A157219.

%K nonn,tabl

%O 0,5

%A _Roger L. Bagula_, Feb 25 2009

%E Edited by _G. C. Greubel_, Jan 10 2022