login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A157181 A new general triangle sequence based on the Eulerian form in three parts ( subtraction):m=3; t0(n,k)=If[n*k == 0, 1, Sum[(-1)^j Binomial[n + 1, j](k + 1 - j)^n, {j, 0, k + 1}]] t(n,k,m)=If[n == 0, 1, ( m*(n - k) + 1)*t0(n - 1 + 1, k - 1) + (m*k + 1)*t0(n - 1 + 1, k) - m*k*(n - k)*t0(n - 2 + 1, k - 1)]. 0

%I

%S 1,1,1,1,5,1,1,17,17,1,1,45,106,45,1,1,105,524,524,105,1,1,229,2231,

%T 4258,2231,229,1,1,481,8547,28771,28771,8547,481,1,1,989,30424,171283,

%U 290126,171283,30424,989,1,1,2009,102926,928070,2505074,2505074,928070

%N A new general triangle sequence based on the Eulerian form in three parts ( subtraction):m=3; t0(n,k)=If[n*k == 0, 1, Sum[(-1)^j Binomial[n + 1, j](k + 1 - j)^n, {j, 0, k + 1}]] t(n,k,m)=If[n == 0, 1, ( m*(n - k) + 1)*t0(n - 1 + 1, k - 1) + (m*k + 1)*t0(n - 1 + 1, k) - m*k*(n - k)*t0(n - 2 + 1, k - 1)].

%C Row sums are:

%C {1, 2, 7, 36, 198, 1260, 9180, 75600, 695520, 7076160, 78926400,...}.

%C The m=0 of the general sequence is A008518.

%F m=3;

%F t0(n,k)=If[n*k == 0, 1, Sum[(-1)^j Binomial[n + 1, j](k + 1 - j)^n, {j, 0, k + 1}]];

%F t(n,k,m)=If[n == 0, 1, ( m*(n - k) + 1)*t0(n - 1 + 1, k - 1) +

%F (m*k + 1)*t0(n - 1 + 1, k) +

%F m*k*(n - k)*t0(n - 2 + 1, k - 1)].

%e {1},

%e {1, 1},

%e {1, 5, 1},

%e {1, 17, 17, 1},

%e {1, 45, 106, 45, 1},

%e {1, 105, 524, 524, 105, 1},

%e {1, 229, 2231, 4258, 2231, 229, 1},

%e {1, 481, 8547, 28771, 28771, 8547, 481, 1},

%e {1, 989, 30424, 171283, 290126, 171283, 30424, 989, 1},

%e {1, 2009, 102926, 928070, 2505074, 2505074, 928070, 102926, 2009, 1},

%e {1, 4053, 336109, 4684096, 19330402, 30217078, 19330402, 4684096, 336109, 4053, 1}

%t Clear[t, n, k, m];

%t t[n_, k_, m_] = (m*(n - k) + 1)*Binomial[n - 1, k - 1] + (m*k + 1)*Binomial[n - 1, k] - m*k*(n - k)*Binomial[n - 2, k - 1];

%t Table[t[n, k, m], {m, 0, 10}, {n, 0, 10}, {k, 0, n}];

%t Table[Flatten[Table[Table[t[n, k, m], {k, 0, n}], {n, 0, 10}]], {m, 0, 10}]

%t Table[Table[Sum[t[n, k, m], {k, 0, n}], {n, 0, 10}], {m, 0, 10}];

%Y A008518

%K nonn,tabl

%O 0,5

%A _Roger L. Bagula_ and _Gary W. Adamson_, Feb 24 2009

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified December 20 08:42 EST 2014. Contains 252241 sequences.