|
|
A157129
|
|
a(n)=(length of n-th run divided by 2) using 1 and 2 and starting with 1,1.
|
|
2
|
|
|
1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 2
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
LINKS
|
Table of n, a(n) for n=1..105.
|
|
FORMULA
|
As for the Kolakoski sequence we suspect sum(k=1,n,a(k))=(3/2)*n+o(n)
|
|
EXAMPLE
|
Third run = 1,1,1,1 of length 4 thus a(3)=4/2=2.
|
|
PROG
|
(PARI) ?w=[1, 1]; for(n=2, 1000, for(i=1, w[n], w=concat(w, 1+(n+1)%2)); w; ) ?a(n)=w[n]
|
|
CROSSREFS
|
Cf. A000002
Sequence in context: A308884 A101598 A342461 * A101615 A246359 A328114
Adjacent sequences: A157126 A157127 A157128 * A157130 A157131 A157132
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Benoit Cloitre, Feb 23 2009
|
|
STATUS
|
approved
|
|
|
|